微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 解析基于DSP设计变频电源数字控制系统程序

解析基于DSP设计变频电源数字控制系统程序

时间:04-23 来源:互联网 点击:

变频技术是电力电子技术的主要组成部分,应用于包括交流电机的调速和供电电源等多个重要领域。数字信号处理器(DSP)已广泛应用在高频开关电源的控制,采取DSP作为变频电源的控制核心,可以用最少的软硬件实现灵活、准确的在线控制。本文提出了一种基于DSP(数字信号处理器TMS320LF2407)的SPWM三相间接变频电源系统。数字信号处理器TMS320LF2407既有一般DSP芯片的特点,还在片内集成了许多外设电路,使其可以很方便地实现变频电源控制。本文中,控制系统采用了工程应用较多的正弦脉宽凋制技术,该技术具有算法简单,硬件实现容易,谐波较小等优点,可以充分发挥DSP的高速性、实时性、可靠性等方面的特点,结合相应的软件,应用一些改进的算法实现了SPWM调制,输出了质量较好、频率和幅值可任意改变的控制信号。

首先介绍了变频电源的拓扑结构以及原理,设计了以三菱IPM模块为基础的包括整流电路、逆变电路、输出滤波器的主回路。在分析了SPWM调制原理的基础上,提出了改进型的规则采样法产生SPWM波。另外并对死区产生的影响做了分析,并给出了两种补偿方法。 在变频电源数字控制器国内外研究的基础上,提出了一种基于数字信号处理器(DSP)的控制器硬件结构,并对控制器的实时性、可靠性和兼容性作了详细的分析。为满足高速和精确的采样,论文在控制器硬件中设计了锁相环电路。为满足智能功率模块(IPM)对死区时间的要求,在对电路仿真分析的前提下,论文在控制器硬件中设计了独立的硬件死区延时电路。 控制器的系统软件设计分为人机接口程序和控制程序。人机接口程序实现了实时电压电流数据及其波形显示,控制参数显示及在线修改等功能;控制程序实现了信号采样分析、PWM脉冲调制和触发、PI控制器等程序。

1 系统的结构

图l为变频电源基本控制电路硬件框图。变频电源采用高频SPWM技术和通用电压型单相全桥逆变电路,选取ICBT功率模块作为开关器件,控制电路采用全数字化设计。

输出电压和电感电流通过采样网络,将输入信号转换为TMS320LF2407所需要的电平,接至TMS3201F2407的A/D转换口。通过键盘键入所要求的输出电压值、频率值,由SCI模块与DSP实现通讯。得到逆变器当前工作的基准电压信号,经过电压电流调节器获得实际的正弦调制信号,与DSP定时器产生的三角波载波信号相交截,输出带有一定死区的驱动控制信号,经驱动单元进行隔离放大后送到IGBT。DSP可以把当前时刻的输出电压、频率值送给单片机并在8位LED上显示出来。为了保证过压、欠压、过流(过载)的情况下能有效地保护功率开关和负载,在本系统中设置了保护电路,一旦出现故障,PDPINT引脚为低电平状态,封锁驱动脉冲控制信号,切断变频电源输出。

2 SPWM原理

在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲的宽度也最大,而脉冲间的间隔则最小,反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减小,称为正弦波脉宽调制。

PWM的全称是Pulse Width Modulation(脉冲宽度调制),它是通过改变输出方波的占空比来改变等效的输出电压。广泛的用于电动机调速和阀门控制,比如我们现在的电动车电机调速就是使用这种方式。所谓SPWM,就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规率排列,这样输出波形经过适当的滤波可以做到正弦波输出。它广泛的用于支流交流逆变器等,比如高级一些的UPS就是一个例子。三相SPWM是使用SPWM模拟市电的三相输出,在变频器领域被广泛的采用。

2.1 实施SPWM的基本要求

(1)必须实时地计算调制波(正弦波)和载波(三角波)的所有交点的时间坐标,根据计算结果,有序地向逆变桥中各逆变器件发出“通”和“断”的动作指令。

(2)调节频率时,一方面,调制波与载波的周期要同时改变(改变的规律本文不作介绍);另一方面,调制波的振幅要随频率而变,而载波的振幅则不变,所以,每次调节后,所胶点的时间坐标都 必须重新计算。

要满足上述要求,只有在计算机技术取得长足进步的20世纪80年代才有可能,同时,又由于大规模集成电路的飞速发展,迄今,已经有能够产生满足要求的SPWM波形的专用集成电路了。

3 SPWM波的软件设计

变频电源研制的核心是SPWM波的生成,可利用DSP通过软件来实现,系统采用了双闭环反馈的控制策略,其外环为输出电压反馈,电压调节器一般采用PI形式,电感电流反馈构成内环,电流环设计为比例环节。由图l可以看出,输出电压的信号经调理采样

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top