微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 基于舰船辐射噪声的舰船目标定位技术

基于舰船辐射噪声的舰船目标定位技术

时间:08-10 来源:互联网 点击:
1 引言
舰船水噪声分为舰船辐射噪声和舰船自噪声两种,舰船辐射噪声与有舰船上机械运转和舰船运动产生并辐射到水中的噪声,它是由离开舰船一定距离的水听器接收到的舰船噪声。航行中的舰船产生的辐射噪声主要有三大类:(1)由主机、辅机、空调设备等产生的机械噪声;(2)由螺旋桨转动导致的空化、旋转声及“唱音”构成的螺旋桨噪声;(3)由水流辐射、附件共振等产生的水动力噪声。舰船辐射噪声是对方声探测系统的信息源,它会把自己的存在暴露给对方,是破坏舰艇隐身性能的主要因素。如何利用这个信息对舰船目标进行“隐蔽式”的定位,乃至引导对其的攻击,这已成为一个热点研究问题。
在实际中遇到的海洋环境造成以及多种人为噪声均不是高斯分布,这类噪声的共同特点是噪声的某些瞬间幅度远远高出其均值,具有非常显著的脉冲特性,且其统计密度函数具有较厚的拖尾,为分数低阶α稳定分布过程这类信号也称为分数低阶矩信号。在这种噪声背景下,用常用的信号处理方法可能会带来许多问题。如何通过测量舰船辐射噪声来完成对舰船目标的定位,就需要寻找一种全新的信号处理方式。本文提出基于盲源分离的的多步定位方法,这种方法通过盲源分离的引入,可以降低分数低阶矩信号的影响,然后通过时差估计,最后完成对目标位置的估计。本文结构安排如下:第2部分对本文采用的声测阵列一五元十字阵结构和声源定位相关问题进行描述和分析,提出问题;第3部分对基于盲源分离的时差估计和定位算法进行深入分析;第4部分对本文所采用算法应用进行实验分析;最后就是对本文进行归纳总结。

2 问题描述
假设水下声信道是理想无畸变的信道,忽略点噪声源在传播过程中的损耗。假设由m个相同的水听器任意分布在同一面组成传感器阵列,接收位于阵列远场中的n个点目标发射的信号波前,目标源和基阵位于同一平面。假设传播介质是均匀且各向同性的,远场信号波前到达基阵时可假设为平面波。
2.1 α稳定分布噪声
α稳定分布为具有更尖峰或偶然脉冲类信号和噪声提供了非常有用的理论工具,它是广义上的高斯分布,即高斯分布是它的一个特例。两者的主要区别是稳定密度比高斯密度有更厚的拖尾,稳定分布的这种特征正是用于对具有冲激特征的信号和噪声建模的主要原因之一。α稳定分布的信号没有封闭表达式,只能通过如下的特征函数描述


其中α为特征指数,表示α稳定分布概率密度函数拖尾的厚度,α值越小,其拖尾就越厚;γ为分散系数,表示α稳定分布的分散程度;β为对称参数,当β=0时,称为对称α稳定分布,记为SαS;μ表示分布的均值或中值。当α=2时,α稳定分布的特征函数与高斯分布的特征函数完全相同,这表明高斯分布时α稳定分布当α=2时的特例。0α2时的SαS分布保持了高斯分布的一些特性,但又有明显的不同。其显著特征是远离均值或中值的样本数较多,从而造成了其时间域波形上较多的尖峰脉冲。通常定义0α2的α稳定分布为低阶α稳定分布以区别与α=2的高斯分布。
2.2 定位结构
由于十字形阵具有分维特性且阵列冗余度较小,因此十字阵是较为合适的阵形,在阵列尺寸相同的情况下,五元十字阵的定向性能要优于四元十字阵。本文选取基于五元十字阵的定位结构如图l所示。建立以阵元S0为坐标原点的直角坐标系,五阵元由坐标原点的阵元S0两个相互正交的线阵S1,S3和S2,S4组成,S1,S3在x轴上,S2,S4在y轴上。

在图1坐标系中,设正交阵元间距为D,则五阵元的坐标分别为:S0(0,0,0),S1(D/2,0,0),S2(0,D/2,0),S3(一D/2,0,0)和S4(0,一D/2,0),设目标声源Ti的坐标为(xj,yj,zj),球坐标为(r,ψ,θ)。目标声源Tj到中心点S0的距离为r,方位角为ψ,俯仰角为θ。假设声信道是理想无畸变的信道,忽略点噪声源在传播过程中的损耗,目标声源Tj以球面波形式进行传播。则各阵元接收信号的数学模型可表示为:


其中x(t)即为接收信号,即在处理器前的数据;A为m×n混叠矩阵,它为接收阵列阵元耦合矩阵;s(t)为源信号包括声信号、干扰信号等;τij为第j个源信号到达第i个接收阵元的相对时延;n(t)为m×1维噪声信号,包括外部噪声、电噪声等,通常视为高斯白噪声。在下面算法中,假设各信号问相互独立且与噪声亦相互独立。基于时差定位的关键问题就是如何消除或降低噪声、干扰信号及其混叠信号对相关求时差的影响,从而提高定位精度,这正是这种定位技术需要着重解决的问题。

3 定位算法
定位的步骤分为三步:首先是进行盲分离,第二步是时差估计,第三步是定位计算。
3.1 盲分离算法
信号传播过程会受到各种外界干扰及内部噪声的影响,测向信号处理的首要目的就是通过对接收信号的处理,消除或降低各种各样的干扰、噪声及由这些干扰和噪声引起的不确定性。盲源分离的技术采用A.Hyvarinen提出的改进ICA定点分离算法。
考虑无噪时的分量wTx的负熵近似式来求代价函数,就是寻求使用有噪观测数据x估计无噪JG(wTx)的方法进行有噪ICA。设z为一个非高斯随机变量,n是一方差为σ2的高斯噪声变量,问题就转变为如何简单地描述E{G(z)}和E{G(z+n)}之间的关系。一般来说,这个关系比较复杂,只有通过数值积分来实现。选择G(?)为一个零均值高斯随机变量的概率密度函数或与之相关的函数使之变得相对简单。零均值、方差为c2的高斯概率密度函数为:

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top