微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 红外背景抑制与小目标分割检测

红外背景抑制与小目标分割检测

时间:11-24 来源:互联网 点击:

 (10)

其中(xi,yi)是窗口的中心坐标,j表示管道内的第j帧.(3)将A1与门限T比较,若A1>T,则记入检测帧;(4)在检测帧中标记目标位置.

五、实验结果
  实验图像是在云层中飞行的红外小目标图像序列,从外场试验录像带上取下了64帧,大小为204×283.选取其中的两幅,图12(a)和12(b)所示即为原始图像,为了清晰起见,经增强后见图12(c)和12(d).图12(a)和12(b)的背景标准差分别为90.10和91.06,目标很小,平均灰度为66.信噪比SNR可定义为目标的平均灰度与背景标准差之比,图12(a)和12(b)的SNR分别是0.73和0.725.图13是自适应法处理后的图像,选取了不同的m0值进行实验,观察它对处理结果的影响.实验中当R=0.87时,E′=E;当m0=1000时,实验结果见图13(a)和13(b);当m0=500时,实验结果见图13(c)和13(d);当m0=100时,实验结果见图13(e)和13(f).


图12 原始图像



图13 自适应法处理结果

  图13的实验结果表明,若m0选取得大于目标面积,则有部分背景和少量噪声会同目标一样残留在图中.m0越大,残留的背景和噪声越多.若m0选取得小于目标面积,则有部分目标像素会被当作背景像素而抑制掉,使分割和检测出的目标变小.但从分割检测出目标的实时性和可靠性考虑,m0应选取得略小于目标面积.这样虽会使目标面积减小,但却提高了对目标的分割速度和增强了对背景的抑制,因而是实际应用中所期望的.在实际应用中,可通过仿真试验确定合适的m0值.在我们的实验中,比较图13的结果可见,选取m0=100或更小是合适的.经过自适应法处理后,目标不仅被较好地保留下来,而且灰度不变.而背景灰度绝大部分变得均匀,与目标对比度显著增大,取得了较好的效果.
  根据目标特点,对于流水线检测,我们选择下列流水线结构参数:①检测管道长度:n′=5帧;②窗口尺寸:l=m=5;③门限:T=(l×m×n′)/2.对经过上述分割后的二值图象进行检测的结果.得到在云层中飞行的小目标轨迹如图14所示,表明该方法取得了较好的效果.

图14 流水线法检测到的目标轨迹

六、结  论
  为了实现背景抑制而分割出小目标,可用高通滤波器抑制大片背景面保留小目标和部分高频噪声.然后再从高频噪声中把小目标检测出来,完成弱目标检测.在比较分析了六种频域和空域高通滤波器之后,为了提高抑制背景而分割出候选小目标集合的效率,提出了自适应门限分割法.门限的确定是基于统计参数的自适应计算,该方法比传统的频域和空域高通滤波器具有速度快、效果好、可适应图象的变化等优点.比传统的门限分割法有更好的自适应性,取得了较好的实验结果.对于分割后的图象考虑到目标运动的连续性,在连续多帧图象的三维时空管道中,对窗口子管道采用基于流水线结构的目标检测方法,从而检测出目标的运动轨迹.实验证明,取得了较好的检测效果.

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top