PWM变频驱动系统差模干扰分布研究
摘要:PWM变频器在提高系统性能的同时,其产生的强烈差模干扰也来带了诸多问题。目前较为常用的干扰抑制措施是加装电磁干扰(EMI)滤波器。而要较好地设计EMI滤波器,就必须先准确掌握系统的干扰分布规律。为此,利用传导干扰分离网络对PWM变频驱动系统的差模干扰分布进行研究,分析其干扰分布规律、主要影响因素以及抑制方式,为EMI滤波器设计提供较准确的理论指导。
关键词:变频器;差模干扰;分布规律;分离网络
1 引言
PWM变频驱动系统通过功率变换器对电能进行变化和控制,使得系统的性能指标得到了较大提高,例如能得到较好的输出电压和电流波形,同时还能提高功率因数和调速性能。但其产生的EMI也十分严重,如电机铁心中形成的涡流效应引起热损耗,可能引起趋肤效应,产生更大的热量,从而使电机的绝缘性能过早损耗;产生的高频共模电压会在电机转轴上感应出较高的轴电压并形成轴电流,使电机的轴承在短期内损坏,缩短电机使用寿命;同时强烈的EMI也会使得变频器自身的控制系统可靠性降低,故障增加。为解决这些问题,国内外很多学者进行了分析研究。这里采用传导干扰分离网络,对变频驱动系统的差模干扰影响因素和分布情况进行了研究,最后根据差模干扰基本模型,对差模干扰抑制方法进行了初步研究。
2 研究对象
研究对象如图1所示,三相电网通过LSN给变频器供电,变频器后接三相异步电动机。变频器前端为不控整流桥,整流输出接有储能电容,其后是PWM三相逆变桥。G1,G,G2分别为LISN、变频器和电机的接地点,N为变频器机壳。整个驱动系统包括两个电能变换环节:AC/DC三相不控整流桥和DC/AC三相PWM逆变桥。因此,系统同时存在两个干扰源,即整流桥干扰源和逆变桥干扰源。
3 实验测试
由文献可知,影响差模干扰分布的因素有调制比M、输出电压和负载电流等参数。为研究影响系统差模干扰分布的主要因素,首先设计了不同负载工况下的实验,其中空载状态为接在电动机后的发电机无额定励磁电流,带载状态为发电机有额定励磁电流。由实验可知,网侧差模干扰在频段10~100 kHz,1~10 MHz时是以-20 dB/dec减小的,在100 kHz~1 MHz之间未出现此斜率是由于250 kHz处更换测试带宽所引起的。从整体来看,网侧差模干扰在整个测试频段上均以-20 dB/dec斜率下降,也与前文理论分析吻合。
由实验结果可得:尽管带载比空载时差模干扰略微大,但从整个测试频段来看,变频器输出电流和电压以及电动机工作状态的改变,对差模干扰的影响不大,并非主要因素,所以差模实验结论可推广至其他工况。
为了解系统电网侧和负载侧的差模干扰主导源,在工况为输入电压380 V,变频器输出电压100%,变频器输出电流12.8 A,电动机工作状态为空载,以及测试位置为电网侧和整流桥单独工作的条件下,对电网侧和负载侧的差模干扰进行了测试,分别得到如图2所示的实验结果。
图2a为电网侧的差模干扰比较。可见,在10~50 kHz,整流桥与变频器产生的差模干扰基本一致,这可以说明此频段内整流桥差模干扰占主导地位。由文献分析可知,逆变桥差模干扰源要比整流桥差模干扰源大,说明中间直流电容对差模干扰有隔离抑制作用。在50~100 kHz,两者之间的差值开始逐渐增大到6 dB左右,此时可认为是整流桥和逆变桥共同作用的结果。随着频率的上升,在100 kHz~10 MHz,两者之间的差值继续增大,最大达到了40 dB,此时可认为逆变桥的差模干扰占主导地位。通过图2a的对比,可得系统电网侧差模干扰分布结论:低频段由整流桥主导,中间频段由整流桥和逆变桥共同主导,高频由逆变桥主导。
图2b是负载侧的差模干扰比较,可十分明显地看出在整个测试频段上,变频器产生的差模干扰远大于整流桥的,两者差值在50 dB以上,所以系统负载侧的差模干扰主要由逆变桥产生。为验证中间直流电容对差模干扰的隔离抑制作用,在上述工况条件下,测试了整流桥单独工作时电网侧与负载侧的差模干扰,实验结果如图3所示。
图中直观地展示了整流桥差模干扰分布情况,其差模干扰主要集中在电网侧;相比而言,负载侧的干扰要小得多。这说明了直流电容对差模干扰的隔离抑制作用。
为了验证直流储能电容对差模干扰的抑制作用和效果,根据系统工况,制作了分压网络(R=1 kΩ,C=2 nF),并结合单相干扰分离网络,对直流电容两侧的差模干扰进行了测试,实验布置如图4所示,其中1,2为直流电容前端接线点,3,4为后端接线点。
图5示出实验测试结果。
其中iDM5,iDM6分别为逆变桥输入端和整流桥输出端的差模电流。可知,在1~4 MHz频段上,直流
- CMOS求和比较器在PWM开关电源控制中的应用(11-27)
- 改善 PWM 电源控制器低负载运行的缓冲放大器和 LED(01-16)
- 负输出罗氏变换器实用性剖析(01-09)
- 一种新型ZCS-PWM Buck变换器研究(02-20)
- PWM技术实现方法综述(02-19)
- 基于HPWM技术的大功率正弦超声波逆变电源(02-26)
- 婵°倕鍊瑰玻鎸庮殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
闂佺ǹ绻堥崝宥夊蓟閻斿憡濯寸€广儱鎷嬮崝鍛槈閺冨倸孝闁汇劎濮甸敍鎰板箣濠婂懐鎳囨繛鎴炴尰濮樸劑鎮¢敍鍕珰闁糕槅鍘剧粈澶愭煙缂佹ê濮囩€规洖鐭傞幆宥夊棘閸喚宀涢悗瑙勬偠閸庢壆绱為弮鍫熷殑闁芥ê顦~鏃堟煥濞戞ǹ瀚板┑顕呬邯楠炲啴濡搁妷锕€娓愰梻渚囧亞閸犳劙宕瑰鑸碘拹濠㈣埖鐡曠粈瀣归崗鍧氱細妞ゎ偄鎳橀幆鍐礋椤愩倖顔忔俊顐ゅ閸ㄥ灚瀵奸幇顔剧煓閻庯綆浜為悷锟�...
- 婵炴垶鎼╅崢鐐殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
缂備緡鍣g粻鏍焵椤掑﹥瀚�30婵犮垼鍩栧畝绋课涢鍌欑剨闁告洦鍨奸弳銉╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺屻倝鏌ㄥ☉妯侯殭缂佹鎸鹃埀顒傤攰閸╂牕顔忕捄銊﹀珰闁规儳鎳愮粈澶愭煕閺傜儤娅呮い鎺斿枛瀹曘劌螣閻戞ê娓愰梻渚囧亞閸犳洟骞撻鍫濈濡鑳堕鍗炩槈閹垮啩绨婚柟顔奸叄瀵粙鎮℃惔锝嗩啅婵☆偆澧楅崹鍨閹邦喚鐭欓悗锝庝簽閻熷酣鏌i妸銉ヮ伂妞も晪绠戞晥闁跨噦鎷�...
- Agilent ADS 闂佽桨鐒﹂悷銉╊敆閻旂厧鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
婵炴垶鎸婚幐鎼侇敊瀹ュ绠抽柛顐秵閸わ箓鏌ㄥ☉妯垮闁告瑥绻樺Λ鍐閿濆骸鏁奸柣鐔哥懐閺嬪儊S闂佸憡鑹剧€氼噣锝為幒妤€绀夐柣鏃囶嚙閸樻挳鏌涘⿰鍐濞村吋鍔楃划娆戔偓锝庝簽鐎瑰鏌i姀鈺冨帨缂侀亶浜跺畷婵嬪煛閸屾矮鎲鹃梺鐑╁亾閸斿秴銆掗崼鏇熷剹妞ゆ挾濮甸悾閬嶆煛閸愩劎鍩f俊顐ユ硶閳ь剚鍐荤紓姘辨閻у挷S...
- HFSS闁诲孩鍐荤紓姘卞姬閸曨垰鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
闁荤姍鍐仾缂佽鐒︾粙澶愬箻閹颁礁鏅欓梺鐟版惈閻楁劙顢氶幎鑺ユ櫖閻忕偠妫勫鍧楁⒒閸稑鐏辨い鏂款樀楠炴帡宕峰▎绂⊿闂佹眹鍔岀€氼剚鎱ㄥ☉銏″殑闁芥ê顦扮€氭煡骞栫€涙ɑ鈷掗柡浣靛€濋弫宥囦沪閽樺鐩庨梺鍛婃煛閺呮粓宕戝澶婄闁靛ň鏅滃銊х磼椤栨繂鍚圭紒顔芥そ瀹曠兘寮跺▎鎯уΤ婵炴垶姊绘慨鐢垫暜婢舵劕绠垫い鈥抽敪SS...
- CST閻庣敻鍋婇崰妤冧焊濠靛棭鍟呴柕澶堝€楃粙濠囨倵楠炲灝鈧洟鎮$捄銊﹀妞ゆ挾鍠愬▓宀€绱掔€n亶鍎忔い銊︾矌閹叉鏁撻敓锟�
闂佸搫顦€涒晛危閹存緷铏光偓锝傛櫅閻︽粓鎮规担绛嬪殝缂佽鲸绻堝畷妤呭Ω閳哄倹銆冮柣鐘辩瀵泛顔忕欢缍璗闂佸憡鑹剧€氫即濡村澶婄闁绘棁顕ч崢鎾煕濠婂啳瀚板ù鍏煎姉缁瑧鈧綆浜炵€瑰鏌i姀鈺冨帨缂佽鲸绻堝畷婵嬪煛閸屾矮鎲鹃棅顐㈡祩閸嬪﹪鍩€椤掑倸鏋欓柛銈嗙矌閳ь剚鍐婚梽鍕暜婢舵劕绠垫い鈥愁敍T闁荤姳鐒﹀畷姗€顢橀崨濠冨劅闁哄啫鍊归弳锟�...
- 闁诲繐绻愮€氫即銆傞崼鏇炴槬闁惧繗顕栭弨銊╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺岋拷
婵炴垶鎸稿ú锝囩箔閳ь剙螖閸屾惮鎴﹀Χ婵傚摜宓侀柛鎰级閸曢箖鎮硅閸ゆ牜妲愬┑鍥ㄤ氦婵炲棗娴烽弰鍌炴偣閸パ冣挃闁宠鍚嬬粙澶嬫姜閹殿喚鈽夐梺闈╄礋閸斿矂鎯冮悩绛圭矗闁瑰鍋涜灇闂佸搫鐗滈崹鍫曘€傞锕€鏄ラ柣鏃€鐏氭禍锝夋倶閻愬瓨绀冮悗姘辨暬閹虫ê顫濋崜褏顦梺鐟扮仛閹搁绮崨鏉戦敜婵﹩鍓涢弶浠嬫煟閵娿儱顏х紒妤佹尰缁嬪顫濋鍌氭暏缂佺虎鍘搁崑锟�...
- 閻庣敻鍋婇崰妤冧焊濠靛牅鐒婇柛鏇ㄥ灱閺嗐儲绻涢弶鎴剶闁革絾妞介獮娆忣吋閸曨厾鈻曢梺绯曟櫇椤㈠﹪顢欓崟顓熷珰闁告挆鈧弻銈夋煕濮橆剛澧︽繛澶涙嫹
闁荤姵鍔﹂崢娲箯闁秴瑙﹂柛顐犲劜閼茬娀鏌¢崶銊︾稇闁汇倕瀚伴獮鍡涙偑閸涱垳顦紓鍌氬暞閸ㄧ敻宕规惔銊ノュ〒姘e亾妞わ絽澧庨幏顐﹀矗濡搫纾块梺闈涙閼冲爼濡靛顑芥灃闁靛繒濮甸悵銈夋煏閸℃洘顦峰ǎ鍥э躬瀹曪綁鏌ㄧ€n剛鍩嶉梺鎸庣☉閺堫剟宕瑰⿰鍛暫濞达絽婀辨竟澶愭煛瀹ュ妫戠紒銊ユ健閺屽懘鏁撻敓锟�...