LTE成为主流?无线通信最新技术趋势盘点(二)
带使用的方式相同。
超宽带通信利用脉冲来传输数据,分配到的带宽为3.1G~10.6GHz,利用条件因国家和地区而异。这种方式通信时的传输功率密度极低,因此具备在现有无线系统使用的频带下也能够实现频率共用的特点。
最后的人体通信是把人体作为信号传输媒介的通信方式。由于波长较短,其传输距离自然也短,因此,无线通信借助的不是辐射电磁场,而是静电场。中心频率为21MHz或32MHz,如果是在日本使用,类别属于微弱无线电台。
还可充当HEMS的传输媒介
无线PAN的第三个焦点动向是用于家庭能源管理的“HAN(home area network)”。
HAN设想的用途是作为家庭内部的空调、照明等基础电器的能源管理系统“HEMS(home energymanagement system)”的传输媒介。“HAN”的说法最初主要出现在美国电力公司的讨论之中。虽然也可以连接电视和个人电脑,但连接的主体是基础电器和白色家电等。
HAN传输的数据不是大容量的视频等数据,主要是电器控制指令、状态报告等小型数据。因此,HAN对于传输容量没有太高要求,传输速度只需达到大约几十kbps即可。与传输性能相比,HAN注重的反而是家庭内传输距离长、能够应用于采用电池驱动的传感器产品的低功耗等方面。
在HAN的传输标准中,无线标准“ZigBee”和“Z-Wave”比较受关注。以Zig-Bee为例,与无线LAN相比,其低功耗性能备受瞩目,还支持多个终端串联传输数据的“多次反射连接”等。过去,Zig-Bee与无线LAN一样,主要使用2.4GHz频带,但目前,使用1GHz以下的频带延长传输距离的举动也日渐活跃。例如在日本,受到期待的是920MHz频带的利用。
思科推进的标准
从制定之初就以使用920MHz等较低频带的为前提的标准是“IEEE802.15.4g”(图5)。这项标准由燃气公司和智能仪表生产商主导制定,特点是功耗低。IEEE802.15.4g是物理层标准,必须要与IEEE802.15.4e等MAC层标准组合使用。

图5:面向智能仪表的“IEEE802.15.4g” 支持各种频带和调制方式,符合各国的频率规定(a)。(b)是NICT开发的支持IEEE802.15.4g的无线收发模块。
关于4g和4e,业内企业成立了“Wi-SUN联盟”,旨在对各公司产品之间的互联性进行认证,并在思科系统和NICT等企业的主导下,开展标准制定工作。测试互联性的活动“Plug Festa”已经在日本和新加坡成功举办。
IEEE802.15.4g支持400MHz~2.4GHz频带的众多带宽,调制方式也可以在4值FSK和OFDM中选择。最大的优点是能够利用传输速度、传输距离、易传达性表现均衡的700M~900MHz频带的各个带宽。另外,IEEE802.15.4g还想到了在IP网络中的使用,最大帧长度拓展到了2048字节(过去的IEEE802.15.4标准为127字节)。
IEEE802.15.4e以IEEE802.15.4的MAC层为基础,通过使无线设备之间的通信待机动作和数据收发动作的时间相配合,增加间歇执行等功能,实现了节电化。
- ADS58C48 切换模式在时分通信系统中的应用(11-13)
- 为FPGA供电的挑战和应对(10-13)
- 大牛带你一次整明白LTE随机接入参数规划(07-25)
- 五大热门模拟技术(07-17)
- 无线设备射频功放设计的革命性演进趋势(上)(03-29)
- 基于FPGA的模拟信号波形的实现方法(04-12)
