微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 无线设备射频功放设计的革命性演进趋势(上)

无线设备射频功放设计的革命性演进趋势(上)

时间:03-29 来源:互联网 点击:
手机、智能手机、个人导航设备(PND)和MP3播放器等无线通信设备是现今最炙手可热的消费电子产品;而功率放大器(PA)则是这些设备中的关键组件。因此,PA的重要性及业界对之的关注均显着增加。

一直以来,PA都是电子设备中的耗能大户,大大缩短了移动设备宝贵的电池寿命。例如,一个典型的WiMAX无线电设备中,基带和收发器的功耗只有约600mW,而PA的功耗却接近1.3W。

工程师在设计PA之前,有许多选择供他们仔细考虑。设计工程师面临的第一个问题是:采用硅材料还是III-V族材料?本文将概述影响PA设计的一些重要问题,并探讨多种基本半导体技术的优劣势,而这些技术将决定在硅和III-V族(砷化镓,即GaAs)的争战中谁将胜出。

电子行业日新月异,近来的许多技术革新都对PA设计有不可忽视的影响。采用了正交频分复用(OFDM)方案的技术,如WiFi、WiMAX和LTE,为PA带来了一些最具挑战性的工作环境。

这些应用中采用的PA需要高线性度来满足信噪比(SNR)目标,同时还必须能够处理与OFDM有关的高峰均功率比。

此外,基于 WiFi(802.11)和WiMAX(802.1)的标准是目前中国以及全球增长最快的使用技术。因此,我们必须关注在低功耗(<1W)、高线性度OFDM PA应用中,GaAs与硅的争夺之战。

不论PA设计人员选择了硅或GaAs,他们都需要进一步选择其它选项,而每个选项都有其优缺点,需要设计人员仔细权衡,以求满足所设计应用的特定要求。

譬如,在GaAs方面,有众多设计选项,如:

1. GaAs HBT(基于双极型)
2. GaAs pHEMT(基于前端FET技术)
3. GaAs BiFET(双极型和多种FET技术的混合)

注:
pHEMT=应变型高电子迁移率晶体管
FET= 场效应晶体管

在硅方面,工程师可以采用以下技术进行设计:

1. CMOS(基于FET)
2. SiGe BiCMOS(速度更高,双极型和FET技术的混合)

目前,OFDM PA设计的技术选择有GaAs HBT和SiGe BiCMOS。

迄今为止,GaAs一直广泛用于OFDM,因为它能够在转换频率(fT)和击穿电压之间取得更好的权衡来提供大功率。

最近10年间,硅技术发展迅速,要选择出具有主导优势的技术变得越来越困难。

直到几年前,2GHz和/或50mW以上的器件都是采用GaAs来设计的;但今天,在接近1W的功率级,可以采用SiGe BiCMOS PA,甚至在10GHz频率下,这些器件也能够充分发挥其功能。

如果效率是你的PA设计的关键,GaAs技术将仍然能够表现出最佳性能,尤其是在功率较大的情况下。此外,GaAs技术还具有更大的击穿电压,可以使PA设计更为稳健。不过好消息是,业界已经成功开发了能够保护击穿电压较低的硅器件的电路。

更复杂的是,对于容许较低输出功率(小于15dBm)和相当低效率(约10%)的应用,集成式 CMOS PA正开始成为2.4和5GHz的选项之一。

与“SiGe半导体公司”这个名字相反,我们其实同时采用GaAs和硅技术来设计PA,故能够为设计工程师就每一种技术在特定应用中的优劣势提供客观公允的看法。

单一设备中使用多种无线电技术

目前,业界存在着多种不同的无线通信技术,这种局面常常导致在单个设备中有多个射频器件同时工作。例如,在通话期间利用蓝牙耳机时,蓝牙和蜂窝必须同时工作。此外,在网络切换期间,移动设备上的WiMAX和蜂窝无线电会同时启动;当GPS用于蜂窝电话上时,蜂窝和GPS也会同时启动。

图1所示为一个双模WiMAX/WCDMA无线电典型实例。在该例中,一个WCDMA 子卡位于一个WiMAX模块之上,而且二者非常接近。如果WiMAX和WCDMA无线电必须同时工作(在网络切换时需要),则必须注意确保二者间互不干扰。


图1:双模WCDMA/WiMAX无线电。(WiMAX模块、WCDMA子卡、)

你可能会问这与PA有什么关系?因为WCDMA和WiMAX的工作频率并不一样,所以我们也许可以假定,即使两个无线电同时工作,也不会产生任何问题。

然而,实际情况并非如此。一个无线电在另一个无线电的通带内所发出的噪声,在接收器端是无法被过滤掉的,而且更会降低受害接收器的灵敏度。当两个无线电被配置在同一个设备中时,这个问题最为明显(见图1),因为一个无线电发出的信号会毫无衰减地到达另一个无线电的接收器。

为阐明这一技术挑战,让我们考虑下面的情形:

我们有一WiMAX无线电,工作频率为2.5到2.7GHz;而发射功率为 23dBm;以及一个会受影响的WCDMA无线电,其接收信号频率为2.17GHz。我们希望能确定WCDMA无线电的噪声容限,并由此得知其灵敏度,以测出最小信号,并确保WiMAX无线电工作时不会因任何小于0.1dB的信号而受损。

WCDMA的信道带宽为 3.84MHz;而要编码CDMA信号则需要117dBm的灵敏度。假设编码增益为21dB(128位芯片代码长度),则灵敏度为 -96dBm/3.84MHz,或-161.8dBm/Hz。

基于此,WCDMA天线的噪声必须低于 -170.9dBm/Hz,使灵敏度只减小0.1dB(-178.1dBm+ -161.8dBm,结果是-161.7dBm的净噪声)。

当然,随信号从WiMAX Tx天线传输到WCDMA Rx天线,WiMAX PA发出的噪声功率会减小。不过,由于两个无线电靠得非常近,天线之间的隔离最多只能在20dB左右,因此WiMAX无线电的输出噪声必须低于 -150.9dBm/Hz。

计算出WiMAX无线电的输出噪声目标后,我们就可以考虑PA设计所牵涉的范围了。假设PA的输入噪声在噪声基底(-174dBm/Hz)上,PA在2.17GHz时的增益30dB,噪声系数5dB。那么,PA的净噪声将为 -174+30+5=-139dBm/Hz,而且,为使WCDMAPA的灵敏度只减小0.1dB,需要2170MHz/12dB的额外滤波。

这样看来,滤波器的最佳位置似乎是直接跟在PA后面。然而,这种做法不值得推荐,因为PA之后的任何损耗都将导致显着的额外功耗,而这种功耗将以热的形式耗散。其次,滤波器损耗的影响会随输出功率的增加而更严重。例如,假设共存滤波器有1.5dB的损耗,PA的效率为20%(表1显示了不同输出功率下,该滤波器对功耗和PA净效率的影响)。对于18dBm的输出功率,1.5dB的滤波器损耗会造成大约130mW的额外DC功耗,其中一部分在滤波器中消耗 (26mW),剩下的大部分(104mW)都是PA消耗的。PA必须增大1.5dB才能克服滤波器的损耗。当发射功率为23dBm时,增加滤波器会增加 411mW的功耗。在26dBm时,功耗增加821mW。若是把滤波器放在PA后面,则可能导致严重的能量损耗(尤其是在输出功率较高时),缩短电池寿命。此外,因为PA必须做得比较大才能克服滤波器损耗,所以成本也会增加。同时,还有一点需注意的,即在每一个输出功率下,1.5dB的后置PA损耗都会使PA效率降低相同数量,从20%到大约14.2%。

表1:后置PA损耗对功耗的影响。(想要得到的输出功率、后置PA共存滤波器损耗、所需输出功耗、PA功耗(假设无后置PA损耗)、实际PA功耗、额外的功耗、PAE净值)


设计工程师的目标如果不是降低功耗,则最好不要把共存滤波器放在PA之后,但也不能放在PA之前,因为大部分噪声实际上都是在PA内产生的。要获得最佳性能,滤波器的最佳位置是放在PA级之间,在 PA芯片内。

这样,产生了一个问题:即哪一种技术最适合于实现集成式滤波器。最初,基于GaAs的半导体技术颇具优势,因为无源器件的基板损耗较低,可获得“更高的Q”(系统振荡频率与能量消耗速度之比)。然而,前面提及的硅工艺不断演进发展,现在已经可以在绝缘二氧化硅 (SiO2)上制作无源器件了,而且其性能还可媲美在更低损耗的GaAs基板上制作的器件。

不过,还有另一个必须额外考虑的事项。

在调谐领域,数字控制线路的运用为硅技术提供了一大优势。当前的半导体晶圆生产存在着容限,难以把无源器件的电容电感,控制到能满足要求严苛的共存滤波器所需的精度。这意味着需要对器件进行某些形式的后生产调谐,来满足共存滤波器的要求。SiGe BiCMOS或Si-CMOS技术能够把模拟或数字控制集成在调谐锐截止滤波器(sharp filter)中。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top