微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 机器人技术 > 国家863计划先进制造与自动化技术领域机器人技术主题发展战略的若干思考

国家863计划先进制造与自动化技术领域机器人技术主题发展战略的若干思考

时间:02-23 来源:互联网 点击:
2. 现状与趋势分析

2.1 战略必争装备与竞争前核心技术

正是看到了机器人技术与自动化工艺装备中包含着许多具有战略性、前沿性和前瞻性的高技术,美国、欧盟、日本等西方发达国家对此极为重视,先后推出并实施了多个国家研究计划,我国也在国家863计划中予以重点支持。在此,我们对与本主题有关的若干战略必争装备与竞争前核心技术的国内外现状与重大研究方向作简要的列举分析。

2.1.1 水下作业装备

21世纪是人类向海洋进军的世纪。海洋资源是近几年国际上激烈竞争的焦点之一,是各国重要的战略目标。为进行海上石油开发、海洋科学研究、海底矿藏勘探开发、海底打捞救生以及军事应用,如侦察巡逻、扫雷、预警等,迫切需要进一步开发水下作业装备。

国际公海组织规定,对有能力进行深海勘探的国家将有优先开采权。“九五”期间,我国海洋局已利用本主题开发的 6 000m水下机器人,在太平洋上勘探了3O万平方公里,并获得了其中矿产资源最丰富的7.5万平方公里的优先开采权,为后人留下了一份产业,实现了以技术换资源的目标。下一步联合国将对富钻结壳进行勘探,如果没有勘探技术装备能力,将失去开采权。我国在水下机器人方面虽然拥有一定的基础,但与美国。俄罗斯、日本等国相比还有很大的差距,远不能满足未来开发海洋的需求,我国在深海载人潜水器、深海作业机器人、12O00m海沟探测机器人等方面还有很多没有开发而必须开发的装备。

2.1.2 超精密加工装备

信息、航空、航天,特别是国防工业对精密和超精密加工的需求是非常迫切的。如导弹、航空与航天器上使用的精密陀螺仪(精密陀螺仪转子的偏心增加 0.5um,将引起100m的射程误差和50m的轨道误差),飞机和潜艇上使用的高精度叶片,空对空导弹上使用的红外接收器非球面反射镜,航天望远镜上使用的超精密镜片等,无一不需要特殊的精密与超精密加工技术。同时,精密、超精密加工技术是先进制造技术的基础和关键,也是一些高新技术和某些尖端科学赖以存在和发展的基础。

目前,国际上超精密车床主轴回转精度均已达O.025um。工件表面粗糙度Ra=0.01~0.02um,最高达0.0045um。进人21世纪,超精密加工的精度将达至0.001um(1nm)。超精密加工尤其是纳米加工是当前各工业发达国家主攻的目标。此外,超精加工材料对象由金属扩大到非金属,高密度、高能量的粒子束加工工艺和装备,以三维曲面加工为主的高性能超精密加工工艺和装备以及配套的三维超精密检测技术和加工环境的控制技术等正成为进一步的发展趋势。而我国在超精密加工方面尚处于起步阶段。

2.1.3电子专用制造装备

电子制造尤其是集成电路IC制造已成为制造业最重要的领域之一。预计到2O05年,我国集成电路市场总销售额将达到1000亿元。这种巨大的市场需求必将拉动对集成电路(IC)制造装备的巨大需求。据预测,“十五”期间我国需建IC芯片生产线30多条、IC封装生产线15条左右。另据预测,建设一条年封装能力为1亿块的IC封装生产线,装备投资约需2亿元人民币。若按我国IC年需求量增长20亿块计算,则仅增添IC的封装设备每年就需4O亿元人民币。

IC制造中的核心和关键装备包括制芯(前道工序)和封装(后道工序)2大部分。前道工序装备发展的趋势是研制新型超精细光刻机等设备,以突破 0.1um的大关;后道装备则是发展与更密、更小、更轻的新型封装工艺相适应的更快。成本更低的封装设备,并且对整个后封装工序的各种设备以数字化封装线方式进行工艺和装备的集成。由于IC制造不仅对国民经济有巨大的影响,而且对国家安全极为重要,所以一些高精密的IC制造装备成了一些发达国家垄断电子行业的核心武器。国家在IC制造行业中虽有一定的基础,也与国外合资建立了一些生产线,但由于我们自己没有先进的IC制造装备,使我国的IC行业受到了很大的制约。目前我国集成电路芯片制造设备的85%仍依赖进口。为了在 IC行业占有一席之地,我国必须自主开发IC制造的核心装备。

2.1.4 微机电系统(MEM)

MEMS是国际公认的一项战略高科技,是未来先进制造发展的主导技术之一,并在医疗保健、生物基因、IT消费电子、环保监测、军事武器等器件及微系统应用方面具有广阔的应用前景。例如,作为信息获取关键的多种传感MEMS已成功地应用于汽车、电子等行业和军事领域;在令人瞩目的信息科学和生命科学的发展中,光MEMS被认为是开启全光通信之门的金钥匙;高密度MEM生物芯片将强有力地推动生命科学和生物技术的发展。

近几年,采用MEMS技术的微型卫星、微型飞行器和进人狭窄空间的微型机器人,也展示了诱人的应用前景。现在MEMS已形成年产值14O亿美元的规模,预计5年后将达到300多亿美元的规模。

MEM是以电子制造的方式设计与制造的微机电系统,他是多种学科的交叉融合,已成为当今国际高技术竞争的一个热点,MEMS产业也正在形成之中。为此各国政府都非常重视MEMS技术,美国国防部近几年每年投人7000万美元用于MEMS研究,德国也投入约7000万美元用于MEMS的研究。MEMS对我国而言是个挑战,也是一个难得的发展机遇。

2.1.5 特种机器人

特种机器人通常是在非结构化环境下工作,即作业无法在事先布置好的条件下进行,而且在作业过程中环境可能发生变化。与在结构化环境下作业的工业机器人相比,在非结构化环境下工作的特种机器人控制更加困难,要求的智能程度更高,如空间与深海作业、精密操作、在役管道内作业等。

特种机器人集当代众多高技术于一身,目前重点研究的特种机器人有仿人机器人、微机器人、微操作机器人、水下机器人、医用机器人、服务机器人、网络机器人、军用机器人、农林与农副产品加工机器人等等,将在航空航天、能源、交通、海洋、生物、医疗、服务、农业、军事和娱乐等领域具有非常广阔的应用前景。

正因为如此.研究和发展特种机器人技术一直受到世界各国的重视,许多国家都把特种机器人技术列入本国的高技术研究发展计划或国家的关键技术研究开发计划。如美国的“国家关键技术”、“商业部新兴技术”和“国防部和能源部关键技术”等计划,欧共体的“尤里卡计划(EU-REKA)”和“信息技术研究发展战略计划(ES-PRIT)”,日本的“极限作业机器人研究计划( R&DOF ROBOICS INEXTREME-ENVI-RONMENT)”、“微机器研究计划(R&D OF MI-CROMACHINE TECHNOLOGY)”、“仿人形机器人研究计划(HUMANOID ROBOICS PROJECT)”等,新加坡、韩国、巴西等发展中国家也都有相应的计划内容。我国863计划智能机器人主题前15年工作的重点之一就是发展我国的特种机器人技术,并在若干方向上取得了令世人瞩目的成就,但在总体上,与国外先进水平相比还有不小的差距。

2.2基础制造装备与技术

21世纪基础制造装备的水平主要体现在高精度、高效率、低成本和高柔性等几个方面。发达工业国家数控机床的加工精度普遍已达到1um的水平,有些已达到0.1um。国外主轴转速在10 000~20 000r/min的加工中心已普及,转速高达250 000r/min的实用主轴也正在研制中;直线电机的轴进给速度已达ZO0m/mn。超高速切削的研究已转移到一些难加工材料的切削加工上。高效率、高精度工艺的一个典型例子是精密成形技术,如近/净成形(Near Net or Net Shape Form-ing)技术,其目的是尽量减少切削,甚至免除切削,减少原材料的浪费,同时提高制造效率,精密成形技术在工业发达国家已得到广泛应用。如:美国的汽车、宇航、航空工业的模锻件、精密锻件占总锻件量的80%以上;日本汽车锻件达到63.9%;德国达到70%~75%。柔性自动化仍是机床业发展的重要趋势之一。柔性自动化的进一步发展是敏捷生产设备。为适应敏捷生产模式,人们正在探求设备自身的结构重组以及生产单元的动态重组问题。

目前我国的基础制造装备与国际先进水平相比还存在着阶段性差距。工业发达国家早在20世纪五六十年代就已普遍采用了优质高效低耗的工艺及装备,实现了柔性自动化,目前正向集成化、敏捷化方向发展。而我国大多数企业目前还采用较落后的制造工艺与技术装备进行生产,优质高效低耗工艺的普及率不足10%,数控机床、精密及高效设备不足5%,现在配国产数控系统的中档数控机床还不到25%,高档数控机床的 90%以上依赖进口。数字化机械(如纺织机械、多色胶印机)的 7O%以上依赖进口。

归纳起来,目前国产基础制造装备普遍存在着“四差”问题,即可靠性相对差、成套性差、外观质量相对差、名牌效应差,从而严重影响了企业的生产效率、产品质量以及产业化规模的提高,同时也严重制约了制造业及其相关行业的发展。

2.3 成套关键装备与技术

国外在大型、成套装备方面有很大优势,并且在成套装备的高技术化方面,取得了巨大的进展,已经实现了数控化、柔性自动化,并大量采用工业机器人,正向着智能化、集成化的方向发展。

据统计,中国工业装备整体技术水平落后国际水平1O~15年,制造业与自动化技术落后15~20年,装备中工业机器人数量极少,数控化比例很低(5%),尚处于单机自动化和刚性自动化阶段,现有成套装备中技术经济性能比较先进的只占1/3,近1/5已经老化,超期率近4O%。装备落后,导致产品普遍档次低、质量差,已成为制约制造业发展的瓶颈。

面向非制造业的成套装备,如各种工程机械、建筑机械已成为当今国际自动化技术发展的一个重要方向。目前国际工程机械的发展正逐步向机。电、液、讯一体化的方向发展。欧洲由产、学。研组成的联合研究团体在政府资助下,在深入开展单体智能化技术研究的基础上,开始了机群智能化技术研究和开发,标志着工程机械智能化的研究又向前迈出了一大步。

我国工程机械正在完成机械液压一体化的进程,应用信息技术进行工程机械智能化方面的研究还处于起步阶段。对个别机种的单机智能化研究已经开始,并初步得到实际应用。但是从整体上看,无论从单机智能化工程机械种类,还是研究和开发的深度,与技术先进国家相比都还存在很大的差距,机群智能化技术的研究还处于空白。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top