如何将PetaLinux移植到Xilinx FPGA上
时间:04-13
来源:互联网
点击:
作者:
Sweta
通信工程系研究生
印度班加罗尔PES理工学院(PES Institute of Technology) sweta.v.walikar@gmail.com
Srikanth Chintala
卫星和无线部研发工程师
印度班加罗尔远程信息处理开发中心(C-DOT) chintala@cdot.in
Manikandan J
电子通信工程系(EC)信号处理领域教授和领域带头人
研究创新孵化学(CORI)教授
印度班加罗尔PES大学(PES University) manikandanj@pes.edu
用户可轻松将这款高稳健操作系统安装到目标FPGA平台上,以供嵌入式设计项目使用。
从最初不起眼的胶合逻辑开始,FPGA已经历了漫长的发展道路。当前FPGA的逻辑容量和灵活性已将其带入了嵌入式设计的中心位置。目前,在单个可编程芯片上可实现一个完整系统,这种架构有助于软硬件的协同设计,并能将软硬件应用进行集成。
这些基于FPGA的嵌入式设计种类需要稳健的操作系统。PetaLinux应运而生,已成为众多嵌入式设计人员青睐的对象。它以开源免费的方式提供,支持包括赛灵思MicroBlaze® CPU和ARM®处理器在内的多种处理器架构。要将PetaLinux移植到特定的FPGA上,必须针对目标平台定制、配置和构建内核源代码、引导载入程序、器件树和根文件系统。
对于PES大学和C-DOT的一个设计项目而言,我们的研发团队准备移植PetaLinux并在采用Kintex®-7 XC7K325T FPGA的赛灵思KC705评估板上运行多个PetaLinux用户应用。结果证明整个过程相当便捷。
选择PetaLinux的原因
在详细介绍具体做法之前,有必要花点时间来探讨针对基于FPGA的嵌入式系统提供的操作系统选项。PetaLinux是FPGA上最常用的操作系统,另外还有μClinux 和Xilkernel。μClinux为Linux发行版,是一款包含小型Linux内核的移植型Linux操作系统,适用于无存储器管理单元(MMU)的处理器[1]。μClinux配备有各种库、应用和工具链。Xilkernel就其本身而言,是一款小型、高稳健性、模块化内核,能够提供高于μClinux 的定制性能,有助于用户通过定制内核来优化其设计尺寸与功能[2]。
同时,PetaLinux也是一款完整的Linux发行版及开发环境,适用于基于FPGA的片上系统(SoC)设计。PetaLinux包含预配置二进制可引导映像、面向赛灵思器件的完全可定制Linux 以及配套提供的PetaLinux软件开发套件(SDK)[3]。其中SDK包括用于自动完成配置、构建和部署过程中各种复杂工作的工具和实用程序。赛灵思提供可免费下载的PetaLinux开发包,其中包括针对各种赛灵思FGPA开发套件而设计的硬件参考项目。同时包含在内的还有适用于赛灵思FPGA的内核配置实用程序、交叉编译器等软件工具、硬件设计创建工具以及大量其它设计辅助功能。
据报道,Xilkernel 的性能优于μClinux[4],而PetaLinux的性能又优于Xilkernel [5]。由于这个原因,特别是由于已针对我们赛灵思目标板提供的软件包原因,我们为我们的项目选择了PetaLinux。移植PetaLinux的另一大优势是用户可以轻松实现远程编程。这就意味着用户可使用远程接入方式,通过远程登录,采用新的配置文件(或比特流文件)加载FPGA目标板。
有两种方法可以创建用于构建PetaLinux系统的软件平台:在Linux终端上使用PetaLinux命令或通过下拉菜单使用GUI。
开始安装
下面详细介绍我们项目团队安装PetaLinux的方法。第一步,我们下载了PetaLinux软件包12.12版以及用于Kintex-7目标板的电路板支持包(BSP)。然后运行了PetaLinux SDK安装程序,并在控制台上使用下列命令把SDK安装到了/opt/Petalinux-v12.12-final目录下:
@ cd /opt
@ cd /opt/PetaLinux -v12.12-final-full.tar.gz
@ tar zxf PetaLinux-v12.12-final-full.tar.gz
随后,我们把从赛灵思网站获得的PetaLinux SDK许可证复制并拷贝到.xilinx和.Petalogix文件夹中。接下来,我们使用下列命令获取适当设置,设置了SDK的工作环境:
@ cd /opt/PetaLinux-v12.12-final
@ source settings.sh
为验证工作环境是否设置正确,我们使用了以下命令:
@ echo $PETALINUX
如果环境设置正确,将显示PetaLinux的安装路径。在本案例中,PetaLinux的安装路径是 /opt/PetaLinux-v12.12-final。
图1:用于用户设置的Linux终端窗口截屏
接下来的工作是安装BSP,其中包含必要的设计文件、配置文件和预构建软硬件包。这些软硬件包已经通过测试,可随时下载到目标板上。另外软件包还可用于在快速仿真器(QEMU)系统仿真环境下的引导。为了安装BSP,我们在path /opt中创建了一个名为“bsp”的文件夹,并使用下列命令复制了KC705 BSP的ZIP文件:
@ cd /opt/PetaLinux-v12.12-final-full
@ source settings.sh
@ source /opt/Xilinx/14.4/ISE _DS/settings32.sh
@ PetaLinux-install-bsp /bsp/Xilinx-KC705
-v12.12- final.bsp
构建为新平台定制的PetaLinux系统,有两种创建和配置软件平台的方法。一种方法是使用Linux终端,在PetaLinux命令对应的路径位置使用PetaLinux命令,如图1所示。第二种方法是通过下拉菜单使用GUI,如图2所示。您可使用其中任何一种方法来选择平台,配置Linux内核,配置用户应用和构建镜像。在操作系统安装完成后,就可使用PetaLinux控制台。而使用GUI则需要完成PetaLinux SDK插件的安装。完成该插件的安装后,就可使用PetaLinux Eclipse SDK中提供的PetaLinux GUI设置各种配置(图2)。该GUI具有各种特性,如用户应用和库开发,以及PetaLinux及硬件平台的调试、构建和配置等。
Sweta
通信工程系研究生
印度班加罗尔PES理工学院(PES Institute of Technology) sweta.v.walikar@gmail.com
Srikanth Chintala
卫星和无线部研发工程师
印度班加罗尔远程信息处理开发中心(C-DOT) chintala@cdot.in
Manikandan J
电子通信工程系(EC)信号处理领域教授和领域带头人
研究创新孵化学(CORI)教授
印度班加罗尔PES大学(PES University) manikandanj@pes.edu
用户可轻松将这款高稳健操作系统安装到目标FPGA平台上,以供嵌入式设计项目使用。
从最初不起眼的胶合逻辑开始,FPGA已经历了漫长的发展道路。当前FPGA的逻辑容量和灵活性已将其带入了嵌入式设计的中心位置。目前,在单个可编程芯片上可实现一个完整系统,这种架构有助于软硬件的协同设计,并能将软硬件应用进行集成。
这些基于FPGA的嵌入式设计种类需要稳健的操作系统。PetaLinux应运而生,已成为众多嵌入式设计人员青睐的对象。它以开源免费的方式提供,支持包括赛灵思MicroBlaze® CPU和ARM®处理器在内的多种处理器架构。要将PetaLinux移植到特定的FPGA上,必须针对目标平台定制、配置和构建内核源代码、引导载入程序、器件树和根文件系统。
对于PES大学和C-DOT的一个设计项目而言,我们的研发团队准备移植PetaLinux并在采用Kintex®-7 XC7K325T FPGA的赛灵思KC705评估板上运行多个PetaLinux用户应用。结果证明整个过程相当便捷。
选择PetaLinux的原因
在详细介绍具体做法之前,有必要花点时间来探讨针对基于FPGA的嵌入式系统提供的操作系统选项。PetaLinux是FPGA上最常用的操作系统,另外还有μClinux 和Xilkernel。μClinux为Linux发行版,是一款包含小型Linux内核的移植型Linux操作系统,适用于无存储器管理单元(MMU)的处理器[1]。μClinux配备有各种库、应用和工具链。Xilkernel就其本身而言,是一款小型、高稳健性、模块化内核,能够提供高于μClinux 的定制性能,有助于用户通过定制内核来优化其设计尺寸与功能[2]。
同时,PetaLinux也是一款完整的Linux发行版及开发环境,适用于基于FPGA的片上系统(SoC)设计。PetaLinux包含预配置二进制可引导映像、面向赛灵思器件的完全可定制Linux 以及配套提供的PetaLinux软件开发套件(SDK)[3]。其中SDK包括用于自动完成配置、构建和部署过程中各种复杂工作的工具和实用程序。赛灵思提供可免费下载的PetaLinux开发包,其中包括针对各种赛灵思FGPA开发套件而设计的硬件参考项目。同时包含在内的还有适用于赛灵思FPGA的内核配置实用程序、交叉编译器等软件工具、硬件设计创建工具以及大量其它设计辅助功能。
据报道,Xilkernel 的性能优于μClinux[4],而PetaLinux的性能又优于Xilkernel [5]。由于这个原因,特别是由于已针对我们赛灵思目标板提供的软件包原因,我们为我们的项目选择了PetaLinux。移植PetaLinux的另一大优势是用户可以轻松实现远程编程。这就意味着用户可使用远程接入方式,通过远程登录,采用新的配置文件(或比特流文件)加载FPGA目标板。
有两种方法可以创建用于构建PetaLinux系统的软件平台:在Linux终端上使用PetaLinux命令或通过下拉菜单使用GUI。
开始安装
下面详细介绍我们项目团队安装PetaLinux的方法。第一步,我们下载了PetaLinux软件包12.12版以及用于Kintex-7目标板的电路板支持包(BSP)。然后运行了PetaLinux SDK安装程序,并在控制台上使用下列命令把SDK安装到了/opt/Petalinux-v12.12-final目录下:
@ cd /opt
@ cd /opt/PetaLinux -v12.12-final-full.tar.gz
@ tar zxf PetaLinux-v12.12-final-full.tar.gz
随后,我们把从赛灵思网站获得的PetaLinux SDK许可证复制并拷贝到.xilinx和.Petalogix文件夹中。接下来,我们使用下列命令获取适当设置,设置了SDK的工作环境:
@ cd /opt/PetaLinux-v12.12-final
@ source settings.sh
为验证工作环境是否设置正确,我们使用了以下命令:
@ echo $PETALINUX
如果环境设置正确,将显示PetaLinux的安装路径。在本案例中,PetaLinux的安装路径是 /opt/PetaLinux-v12.12-final。
图1:用于用户设置的Linux终端窗口截屏
接下来的工作是安装BSP,其中包含必要的设计文件、配置文件和预构建软硬件包。这些软硬件包已经通过测试,可随时下载到目标板上。另外软件包还可用于在快速仿真器(QEMU)系统仿真环境下的引导。为了安装BSP,我们在path /opt中创建了一个名为“bsp”的文件夹,并使用下列命令复制了KC705 BSP的ZIP文件:
@ cd /opt/PetaLinux-v12.12-final-full
@ source settings.sh
@ source /opt/Xilinx/14.4/ISE _DS/settings32.sh
@ PetaLinux-install-bsp /bsp/Xilinx-KC705
-v12.12- final.bsp
构建为新平台定制的PetaLinux系统,有两种创建和配置软件平台的方法。一种方法是使用Linux终端,在PetaLinux命令对应的路径位置使用PetaLinux命令,如图1所示。第二种方法是通过下拉菜单使用GUI,如图2所示。您可使用其中任何一种方法来选择平台,配置Linux内核,配置用户应用和构建镜像。在操作系统安装完成后,就可使用PetaLinux控制台。而使用GUI则需要完成PetaLinux SDK插件的安装。完成该插件的安装后,就可使用PetaLinux Eclipse SDK中提供的PetaLinux GUI设置各种配置(图2)。该GUI具有各种特性,如用户应用和库开发,以及PetaLinux及硬件平台的调试、构建和配置等。
通信工程 电子 FPGA 嵌入式 Linux 赛灵思 ARM SoC 电路 仿真 Xilinx LED 总线 C语言 uClinux 相关文章:
- 一种扩频通信调制器的FPGA设计与仿真(11-08)
- 基于FPGA的RS485接口误码测试仪的设计(11-09)
- 零基础学FPGA (一) 关于我和FPGA(01-14)
- 基于ARM的嵌入式系统中从串配置FPGA的实现(06-09)
- 周立功:如何兼顾学习ARM与FPGA(05-23)
- 初学者如何学习FPGA(08-06)