微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > FPGA和CPLD > 利用FPGA对大规模MIMO信道进行特性描述

利用FPGA对大规模MIMO信道进行特性描述

时间:01-12 来源:互联网 点击:
理解MU-MIMO

采用MU-MIMO技术的基站需要为众多发射天线创建波形,这些天线与无线信道相结合时可同时为多个用户发送数据。创建多用户波形需要在基站上执行 精细复杂的处理。我们现已提出很多种MU-MIMO技术。对MU-MIMO设计的普遍要求是准确掌握每个基站天线到每个客户设备间的无线传播特性。

有一种被称为“迫零”的MU-MIMO方法,与单用户技术相比,其无论从理论上还是从近期的实践上[3]都可实现显著的性能提升。迫零方法可最大程 度地提高每个客户接收天线上的信号与干扰加噪声比(SINR)。将SINR实现最大化需要最大程度地提高达到用户天线的波形中的用户有效载荷的信号功率 (即“S”),同时尽量减小其他用户的有效载荷功率(即“I”)。迫零法需要在基站上进行非常精细复杂的处理。采用迫零法,在计算特定基站天线的传输波形 时需要了解每个用户的有效载荷以及从其它天线到每个用户的无线信道。计算复杂性会随着基站天线数量的增加而显著提高。

接收器使用数据包SIGNAL字段中的RATE值自动针对每个数据包配置解调和解码模块。接收器能以足够快的速度解码任何速率的数据包,并在接收后发出确认字符(ACK),以满足标准对于接收至发送(Rx-to-Tx)之间严格的转换要求。

接收器中的信道估计子系统对大规模MIMO信道的特性描述来说特别重要。在标准OFDM接收器中,信道估计器生成每个副载波的复杂信道系数。均衡器 使用这些估计系数为每个接收到的数据符号校正信道幅度和相位衰减问题。此外,我们的设计还将每个接收数据包的信道估计值副本保存到片上存储区。MAC将这 些信道估计值作为关于接收帧和标准信息(例如接收器功耗、AGC增益选择、校验和状态以及天线选择等)的额外元数据。然后,信道估计值会被复制到更高电平 的MAC以备进一步处理。我们的特性描述平台从Argos 阵列中各个节点所接收到的每个数据包中收集这些估计值,以构成对大规模MIMO传播环境的实时视图。

WARPNET实验框架

大规模MIMO特性描述系统的最后一个部分是WARPnet框架,用于运行大型WARP节点网络的实验。WARPnet是一个Python定制软件 包,使用专用控制连接功能连接至多个WARP节点。该框架允许Python脚本在PC上运行,以便实时地远程配置实验参数并检索实验数据。WARPnet 通过每个WARP v3板卡上的次级以太网连接与Mango 802.11参考设计进行交互。上部的MicroBlaze器件用于处理WARPnet命令,使框架能够直接访问节点的高电平MAC状态以及从低电平 MAC和PHY传送上来的全部数据。

仿真假设网络中有一个基站和八个用户,用独立且恒等分布的瑞利(Rayleigh)衰落信道对无线信道建模。仿真实验给出了同时服务一至八个用户时 的总体网络速率与基站所用天线数量的对比情况。当天线数量很少时,我们发现一次对一个以上的用户采用共轭波束形成法并没有好处。如果基站只限制在几个天 线,那么带分时功能的传统单用户波束形成法可能优于多用户共轭波束形成法。随着天线数量的增加,可以支持更多的用户,以获得整体网络速率的显著提升。

该仿真实验使用理想的信道模型展示说明多用户共轭波束形成法可实现性能提升。性能提升是否能够在真实系统中实现取决于基站与客户端设备之间真实的无 线信道。我们的MU-MIMO信道特性描述平台可实时测量基站与真实用户设备之间的信道,为评估MU-MIMO技术的真实性能提供了强大的工具。

完美集成

既然我们已经了解了测量大规模MIMO信道的目的,以及Rice Argos阵列、WARP硬件和Mango 802.11参考设计所提供的工具,我们接下来就看一看如何将这些内容组成完整的实时大规模MIMO信道特性描述平台。

Argos阵列中的24个WARP v3节点由Mango 802.11定制参考设计版进行配置。这个版本以只接收监控器模式工作,使节点的四个天线都接收数据包。每次接收数据包时,节点都会为每个副载波估算复杂信道系数。

共轭波束形成[1]是另外一种MU-MIMO替代技术。使用这种方法时,基站会最大程度地提高发送到每个客户端设备的有效信号功率,而不会主动将干 扰功率最小化。共轭波束形成法通过将信号功率最大化(SINR中的“S”)同时忽略干扰功率(SINR中的“I”)的方式增加每个用户的SINR,理论上 这种方式会随天线数量的增加而改善。此外,进行每个传输天线波形的共轭波束形成计算时,无需知道其它天线的信道特性。以上因素综合起来使得共轭波束形成法 特别适合用于大规模MIMO系统,其中基站天线数量比用户要多得多。

考虑一下经典的Shannon信道容量公式C =log(1+SINR)。无线信道的容量(比特/秒/Hz)与SINR成对数增长关系。当系统添加更多用户和天线时,多用户共轭波束形成法存在两个相互 矛盾的因素。首先,多个天线的存在会增加接收信号功率,因为每个天线都可旋转相位,使传输信号在用户接收器端被有机地结合起来。第二,独立用户的多传输会 增加干扰功率。叠加的干扰信号会随机组合。随着天线数量的增加,有机组合的信号功率增长速度超过随机组合的干扰功率,从而增大整体的SINR。

图4中的仿真结果显示出,在使用共轭波束形成法时,基站天线数量的增加对整体网络容量的影响。


图4 – 多用户MIMO网络的仿真表明,当接入点安装足够多的天线时可为多用户实现显著的速度提升。

对数据包进行解码并通过以太网发送数据包头和信道估计值以进行分析。这个处理流程在阵列中所有24个并行工作的节点中执行。

为了与标准Wi-Fi设备通信,信道测量平台必须实现一个标准的802.11接入点。使用另一个WARP v3节点来达到此目的,使Mango 802.11参考设计运行于AP模式。这个AP节点作为Argos阵列中的第25个节点。AP可提供开放的Wi-Fi网络,接受商用Wi-Fi设备的关 联,并通过其主以太网连接提供互联网接入。

这是Mango 802.11参考设计中AP的标准特征。为了实现实时信道测量,AP需要实施一个附加功能。每次有Wi-Fi客户端加入或离开无线网络时,AP节点会通过 WARP v3板卡上的副以太网连接发送一个以太网数据包。信道分析应用程序(下面将介绍)使用这些关联更新来维护活动客户端本地列表。 客户端传输

在从Wi-Fi商用设备接收到的数据包中收集信道估计值时所面临的一个重要挑战是确保设备的信息发送频率足够高。现代Wi-Fi设备经常采用严格的 节电方案,在没有应用程序请求网络接入的情况下会关闭Wi-Fi连接。这些设备会定期与接入点报到,但其频率有可能不足以确保获得最新的阵列信道估计信 息。

我们用两种方法解决客户端传输频率不足的问题。首先,修改由平台AP发送的信标中的流量指示图(TIM)字段,以通知所有连接客户端有新的数据包正 排队等待。TIM字段一般用来帮助客户端实现节电效果,使客户端在纯接收模式下短暂唤醒,以接收信标,解码TIM,并在无流量等候时恢复到低功耗模式。通 过在每个信标的TIM字段中列出每个节点,可以让节点较少地进入休眠模式。

第二种方法是使用客户端设备发送的ACK数据包来请求客户端传输。该阵列可以从客户端发送的任何数据包(包括短ACK)中提取信道估计值。不过,802.11 ACK数据包只包含一个目标MAC地址,通常会阻止阵列识别正在传输的客户端。

我们在802.11 MAC规范中使用一个特殊方法来解决这一问题。该标准要求802.11器件在成功接收发送到该客户端的单播数据包后发送一个肯定的确认数据包。即使数据包 源地址无法识别,“强制ACK”要求仍然适用。因此, AP可发送一个采用唯一虚假源地址的数据包,以便让包含唯一标识符的客户端触发一个ACK发送信号。客户端收到数据包后会将ACK发送至AP所使用的唯一 虚假源地址。阵列节点接收ACK,并明确地将得到的信道估计值与发送客户端进行关联。这个技巧非常好用,能够在阵列上为信道估计触发频率更新。之所以能使 用这种方法,是因为Mango802.11参考设计具备完全可编程性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top