微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > FPGA和CPLD > 伪随机序列及PLD实现在程序和系统加密中的应用

伪随机序列及PLD实现在程序和系统加密中的应用

时间:02-27 来源:互联网 点击:

2 应用举例


   


2.1 并行口加密电路


    在PC机系统中,一般打印机并行接口包括单向输出的8条数据线D0~D7和四条控制线、5条状态输入线,因此每次读操作只读取4bits密码,其加密电路原理框图如图3所示。由于并行口不提供电源,将联机控制信号SLCT置高提供的电流很小,因此直接挂在并行口上的电路必须选用规模不大的低功耗器件。


    经并行口控制移位寄存器产生密码的基本操作步骤是:(1)SLCT置高加电;(2)STROBE触发经D0~D8写入16位控制字,选通加密电路,否则打印口正常;(3)初始化信号INIT置低,STROBE选择预置移位寄存器和移位计数器;(4)INIT置高选通移位时钟;(5)检测数据是否准备好;(6)换行控制AUTO LF置高,在STROBE脉冲作用下数据按4bits输出供CPU读取;(7)SLCT置低断电。


    防跟踪记数器由移位计数器满状态启动,其溢出脉冲使触发器翻转选通三态门,扰乱输出数据。防跟踪记数器和移位寄存器时钟可由门电路构成的RC振荡器产生。


    2.2 ISA总线加密电路


    与并行口方式相比,通过总线方式对加密电路的移位寄存器和移位记数器的预置、输入数据的异或解密等操作更灵活、方便,并可与其它电路结合,其原理框图与图1相似。总线接口电路对端口地址和控制信号译码,产生移位寄存器和移位记数器输入写、移位寄存器及异或解密输出读信号,读信号清零防跟踪记数器并阻断其时钟。在ISA总线接口中,移位寄存器时钟用OSC或总线时钟BCLK,而防跟踪记数器时钟可采用移位时钟或状态持续变化的总线控制信号及状态信号,如:地址锁存信号BALE、刷新指示信号REFRESH、DMA操作允许信号AEN(因用于I/O地址译码,隐蔽性好)等,用REFRESH信号时计数器规模小、运行可靠,但是切断该信号防跟踪功能不起作用,密码数据仍正常产生。


    2.3 单片机/ DSP系统程序加密电路


   


早期的单片机系统大都用扩展EPROM作为程序存储器,这种方式目前在高速单片机/DSP中仍然很常用。对于程序量小,不需外部程序寻址的简单系统(如微狗),采用内置EPROM/FLASH RAM、带加密控制字的MCU(如GMS97C2051)本身就能可靠地保护程序;因此我们的讨论只限于用扩展程序存储器的系统。


    对扩展程序存储器的加密保护可通过对其数据和地址线的异或/取反扰乱来实现,其目的都是不能直接获取程序存储器内部保存的数据。由于X=X+K+K,X=X,因此在系统工作时由硬件实现代码和密钥的异或/取反操作可得到正确的程序(文献[2]中用二级异或提高加密强度的观点不正确,因为Y=X+K1+K2=X+K),其原理如图4所示。通常单片机加密的方式是密钥固定不变,或CPU读取程序代码的同时,从另一片EPROM读取密码,使每一代码对应一密钥。这两种方式的解密只需用简单的组合逻辑电路,对前一种方式,用逻辑分析法很容易求解逻辑关系而解密,后一种方法进行逻辑分析的工作量虽然大大提高,但密钥本身容易被直接获取。因此我们用m序列产生器动态产生密钥,将解密的组合逻辑电路与时序逻辑相结合,而较复杂时序逻辑的分析是很困难的。


    对8031、MC6085兼容系列的单片机系统,编程使开始的一段初始化程序顺序执行,系统复位时自动对移位寄存器设初值,复位后程序存储器的读信号同时作为移位时钟,使每条指令的密钥不断变化;在第一次执行循环、跳转指令前,程序发控制字阻断移位时钟,使以后的程序密钥相同。在高速DSP系统中,一般上电后将低速EPROM中的程序加载到高速SRAM中运行,可使EPROM的读控制信号一直作为移位时钟,使密钥不断变化;如果用串行口方式加载,程序解密操作与数据通信中的数据解扰相同,数据输出时钟直接作为移位时钟。单片机/DSP作为微机系统的协处理器时,单片机/DSP的代码一般经总线装载,可将加密代码与移位寄存器输出的密钥异或解密,输出到单片机/DSP的程序RAM。


    系统运行时,用于MCU/DSP程序保护的防跟踪计数器时钟一直有效,这样可以防止仿真器的跟踪。防跟踪计数器要用程序读或其相关信号清零,有的DSP从内部RAM运行程序时,程序读无相应输出信号,这时可用定时器中断或程序中及时插入的代码来清零。


    上述介绍应用移位寄存器产生伪随机数据对程序进行加密的一些方法,曾在我们设计的系统中得到验证,整个电路的设计不复杂,占用PLD 器件的资源不多,完全可结合在系统的硬件逻辑设计中。使用8/16位的移位寄存器时,密钥量有限,制约了加密的复杂度,使用者应根据设计要求和自己的经验,引入各种非常规的操作方式,这样就可以用简单的硬件电路,很好地实现软件和系统的保护。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top