基于FPGA的动态可重构系统的通信结构研究
时间:11-09
来源:互联网
点击:
3.2 通信结构
3.2.1 分类
基于片上总线策略的通信结构有: RMBoC(Reconfigurable Multiple Bus on Chip)和BUSCOM。基于片上网络策略的通信结构有: DyNoC(Dynamic Network on Chip)和CoNoChi(Configurable Network on Chip) 。
RMBoC是为多处理器系统提出的,基于可重构多总线网络改进而来的。任何系统级的重构都不会改变RMBoC的模块和物理拓扑,应用层上的通信结构改变是通过层叠网上的点对点通道。该结构具有高灵活性,但是可伸缩性较弱,其结构如图2所示。
图2 RMBoC结构图
DyNoC是首个将基于包的NoC方案用于可重构设计的结构,它由处理单元和路由器组成二维阵列,每个处理单元都连接一个路由器,路由器之间相互连接。该结构的可伸缩性、延展性和可模块化性能都很好,只是灵活性欠佳。一个5×5的DyNoC系统结构图如图3所示。
图3 5×5 DyNoC系统结构图
4种结构的设计参数见表1,执行参数(在VirtexII上实验得到)见表2。特别指出,片上总线的执行参数是针对整个结构,而片上网络的执行参数是针对单个交换节点。
这4种结构都能很好地满足动态可重构FPGA的设计要求。片上网络的结构体现了较好的结构参数,但是片上面积花费巨大,所以当设计侧重片上效率时,首选片上总线的结构。
另外,BUSCOM只需要很少的硬件资源,而在分层总线结构中RMBoC的灵活性优于BUSCOM;CoNoChi具有最佳的结构参数,是理论上最支持动态可重构的结构,但是在VirtexII平台上执行具有一定困难,因而设计了DyNoC来适应VirtexII平台有限的可重构能力。
3.2.2 DyNoC的应用实例
交通灯控制(TLC)可以用一个3×3的DyNoC来实现,由3个模块组成: VGA控制器(VGA),交通灯视觉模块(LV)和交通灯控制模块(TC)。VGA模块可以显示目前路口情况、行人控制键和灯信号;交通灯视觉模块负责控制交通灯内部构造,由VGA模块显示;交通灯控制模块(TC)用来获取行人需求。VGA发出X和Y 像素扫描的位置给交通灯视觉模块,并接收需要显示的颜色;FSM模块用来监控行人的键控输入(片上有两个按钮),向交通灯视觉模块发送转换灯状态的信息,然后显示相应颜色的灯。在3×3 DyNoC中,用正中的路由器来实现与其他所有路由器的连接,其他路由器也保持相互通信以确保高通信量。整个交通灯控制(TLC)的实现可以在没有中断和故障的情况下运行。
表1 4种结构的设计参数
表2 执行参数(在VirtexII上实验得到)
4 相关问题和发展趋势
① 目前片上系统设计中各IP组件可重用,但通信结构无法重用。因此在系统重构时,怎样为动态配置的模块提供一个灵活快速的通信接口成为主要问题。可研究一种动态可重构的NoC架构,能为各IP之间的通信提供灵活的接口,并能通过片上引脚与板级系统的其他芯片进行数据交换,提供较好的通信质量QoS,包括高吞吐量和短延迟等。
② NoC设计的一个重要问题是决定路由类型,这对网络的性能和功耗有重要影响。路由策略越复杂,设计面积就越大,因此需要在面积和性能之间进行折中。选择路由策略应主要考虑实现的复杂性和性能需求两大问题。
③ 重构时隙将影响系统功能的连续性,为提高动态可重构计算系统性能,如何避免或减少重构时隙是实现动态重构系统的瓶颈问题。对于多重context结构的 DRFPGA,直接通过context间切换来改变配置信息,控制阵列单元实现新功能重构,切换速度直接影响重构时间的长短,一般仅需几ns。这种重构方式的实现是动态重构技术发展的主要标志。
结语
本文介绍了可重构体系结构和典型的动态可重构计算结构;详细分析了动态可重构系统的通信结构,并对4种通信结构的主要性能进行实验,得出对比数据;列举了一种结构在交通灯控制中的应用实例;最后探讨了动态可重构技术研究面临的相关问题和发展趋势。
3.2.1 分类
基于片上总线策略的通信结构有: RMBoC(Reconfigurable Multiple Bus on Chip)和BUSCOM。基于片上网络策略的通信结构有: DyNoC(Dynamic Network on Chip)和CoNoChi(Configurable Network on Chip) 。
RMBoC是为多处理器系统提出的,基于可重构多总线网络改进而来的。任何系统级的重构都不会改变RMBoC的模块和物理拓扑,应用层上的通信结构改变是通过层叠网上的点对点通道。该结构具有高灵活性,但是可伸缩性较弱,其结构如图2所示。
图2 RMBoC结构图
DyNoC是首个将基于包的NoC方案用于可重构设计的结构,它由处理单元和路由器组成二维阵列,每个处理单元都连接一个路由器,路由器之间相互连接。该结构的可伸缩性、延展性和可模块化性能都很好,只是灵活性欠佳。一个5×5的DyNoC系统结构图如图3所示。
图3 5×5 DyNoC系统结构图
4种结构的设计参数见表1,执行参数(在VirtexII上实验得到)见表2。特别指出,片上总线的执行参数是针对整个结构,而片上网络的执行参数是针对单个交换节点。
这4种结构都能很好地满足动态可重构FPGA的设计要求。片上网络的结构体现了较好的结构参数,但是片上面积花费巨大,所以当设计侧重片上效率时,首选片上总线的结构。
另外,BUSCOM只需要很少的硬件资源,而在分层总线结构中RMBoC的灵活性优于BUSCOM;CoNoChi具有最佳的结构参数,是理论上最支持动态可重构的结构,但是在VirtexII平台上执行具有一定困难,因而设计了DyNoC来适应VirtexII平台有限的可重构能力。
3.2.2 DyNoC的应用实例
交通灯控制(TLC)可以用一个3×3的DyNoC来实现,由3个模块组成: VGA控制器(VGA),交通灯视觉模块(LV)和交通灯控制模块(TC)。VGA模块可以显示目前路口情况、行人控制键和灯信号;交通灯视觉模块负责控制交通灯内部构造,由VGA模块显示;交通灯控制模块(TC)用来获取行人需求。VGA发出X和Y 像素扫描的位置给交通灯视觉模块,并接收需要显示的颜色;FSM模块用来监控行人的键控输入(片上有两个按钮),向交通灯视觉模块发送转换灯状态的信息,然后显示相应颜色的灯。在3×3 DyNoC中,用正中的路由器来实现与其他所有路由器的连接,其他路由器也保持相互通信以确保高通信量。整个交通灯控制(TLC)的实现可以在没有中断和故障的情况下运行。
表1 4种结构的设计参数
表2 执行参数(在VirtexII上实验得到)
4 相关问题和发展趋势
① 目前片上系统设计中各IP组件可重用,但通信结构无法重用。因此在系统重构时,怎样为动态配置的模块提供一个灵活快速的通信接口成为主要问题。可研究一种动态可重构的NoC架构,能为各IP之间的通信提供灵活的接口,并能通过片上引脚与板级系统的其他芯片进行数据交换,提供较好的通信质量QoS,包括高吞吐量和短延迟等。
② NoC设计的一个重要问题是决定路由类型,这对网络的性能和功耗有重要影响。路由策略越复杂,设计面积就越大,因此需要在面积和性能之间进行折中。选择路由策略应主要考虑实现的复杂性和性能需求两大问题。
③ 重构时隙将影响系统功能的连续性,为提高动态可重构计算系统性能,如何避免或减少重构时隙是实现动态重构系统的瓶颈问题。对于多重context结构的 DRFPGA,直接通过context间切换来改变配置信息,控制阵列单元实现新功能重构,切换速度直接影响重构时间的长短,一般仅需几ns。这种重构方式的实现是动态重构技术发展的主要标志。
结语
本文介绍了可重构体系结构和典型的动态可重构计算结构;详细分析了动态可重构系统的通信结构,并对4种通信结构的主要性能进行实验,得出对比数据;列举了一种结构在交通灯控制中的应用实例;最后探讨了动态可重构技术研究面临的相关问题和发展趋势。
FPGA 集成电路 总线 电路 MIPS DSP 仿真 SoC PCB 相关文章:
- 基于FPGA的片上系统的无线保密通信终端(02-16)
- 基于Virtex-5 FPGA设计Gbps无线通信基站(05-12)
- 基于FPGA的DVI/HDMI接口实现(05-13)
- 基于ARM的嵌入式系统中从串配置FPGA的实现(06-09)
- 采用EEPROM对大容量FPGA芯片数据实现串行加载(03-18)
- 赛灵思:可编程逻辑不仅已是大势所趋,而且势不可挡(07-24)