CPLD在IGBT驱动设计中的应用
时间:09-28
来源:互联网
点击:
随着国民经济的不断发展,变频调速装置的应用越来越广泛。如何打破国外产品的垄断,已成为一个严肃的课题摆在我国工程技术人员的面前。
在某型号大功率变频调速装置中,由于装置的尺寸较大,考虑到结构和散热的条件,主控板上DSP产生的PWM信号需经过较长的距离才能送到IGBT逆变单元中。为保证PWM信号传输的准确性和可靠性,必须解决以下几个问题:首先是抗干扰问题,变频器工作时,IGBT的开关动作会产生高频干扰信号;其次是如何保证PWM信号的前、后沿质量,减少IGBT开关动作的过渡过程;最后是如何减少布线电感,尽可能缩短PWM信号传输距离,避免过多的内部连线。
1 总体设计
原则上说,从触发电路到IGBT栅极和发射极的引线应做到既短又一致。但随着变频调速装置功率的不断增大,装置的尺寸也在增大,散热条件要求更高。由于结构设计上的种种原因,真正做到这点有很多实际困难。
DSP产生的PWM信号既可以采用串行方式又能以并行方式进行传输,但这两种方式都有着各自的特点。采用并行方式传输信号(即每一个IGBT模块的栅控端都接一根信号线)会造成系统内部接线过多、接地困难,抗干扰性大大降低,这种情况尤以采用了多重化、多电平技术的变频装置为甚。若利用串行方式,PWM信号的传输速率又受到介质的极大限制。在目前诸多传输介质中,只有光纤具有损耗低、频带宽、重量轻、不受电磁干扰等突出优点。GI型光纤用LED做光源时,传输速率可达140Mbit/s,传输损耗可忽略不计。IGBT的工作频率通常很少用在15kHz以上,因此以异步串行方式高速传输PWM信号时,采用光纤作为传输介质是唯一的选择。
在串行的PWM信号送到IGBT的栅控端之前,还需将该信号转化为并行形式。尽管采用普通的串/并转换芯片可以实现上述功能,但这些芯片的最高工作频率有限,如74166的最高工作频率为35MHz,对于目前广泛采用多重化和多电平技术的变频装置来讲,这种工作频率显然有着较大的局限性。尤其是在实时性、快速性要求甚高的电机控制领域,不可能采用应答方式完成信号的传输,因此接收端需要有较强的纠错和容错能力。若采用普通的芯片,难以只用一两片芯片完成上述功能。但CPLD具有极强的灵活性,内含128个宏单元,最高工作频率可达167MHz(以Cypress CY37128为例),可以只用一两片芯片就能完成较复杂的逻辑功能,因此CPLD与光纤的结合是解决大功率变频器中信号传输的最好选择。系统信号流程图如图1所示。
2 通讯方案
异步串行格式的一个数据帧包括1位起始位和8位数据位,最后是停止位。起始位规定为0,8位数据位由高到低顺次发送,前7位组成1个编码字符,第八位为奇偶校验位。停止位可以选择1位、1位、2位。从系统实际要求出发,我们对标准的异步串行格式进行了修改,将三相PWM信号进行编码,用以下数据格式发送到信号转换单元:0-a3c3a2c2a1c1-V-1111。其中0为起始位,a1、a2、a3分别对应三相逆变桥每个桥臂的栅控信号,c1、c2、c3分别对应三相逆变桥每个桥臂的封锁信号,V是一位校验位,最后四个1为结束标志位。信号转换单元的CPLD接收到该信号后,将此串行PWM信号转换为并行形式。另一方面,为保证逆变单元能够正常工作,还需将逆变单元故障信号送到上位机以供故障诊断。
故障信号以以下串行编码格式送出:0-a1a2a3a4a5a6-V-1111,0为起始位,a1、a2、a3分别对应每个桥臂的驱动故障信号,a4为过热信号,a5、a6为通讯故障 信号,V为校验位,最后四个1为结束标志位。上位机板上的CPLD将此信号转换为并行形式。事实上,PWM信号和故障信号的处理过程是相同的。
对于异步串行通讯,通常要保证发送的信号在接收端能被正确接收,往往采用两类同步处理办法:一类是使用硬件手段实现通信协议的部分功能;另一类是使用各种短小的帧来实现通信功能。在本系统,由于实时控制对时间的要求,不可能采用上述形式的通讯方案。因此根据系统实际需要,数据传输采用起止式同步方案,即用“0”代表起信号,“1”代表止信号。在不发送信息时,一直发送止信号。第一个由“1”到“0”的转换表示字符的开始收端检测到这个转换后控制位时钟输出,以便对接受信号进行码位中点取样判决。
针对系统的实际要求,为确保数据通讯的正确性,在正常工作以前,DSP模块必须向信号转换单元固定发送一个标志字。只有当信号转换单元连续几次正确收到标志字后,才能建立正常通讯。在正常通讯时,为避免随机干扰的作用,只有在连续出现多次帧错误的情况下,信号转换单元才向上位机发出通讯故障信号,以确保系统工作的稳定性。
在某型号大功率变频调速装置中,由于装置的尺寸较大,考虑到结构和散热的条件,主控板上DSP产生的PWM信号需经过较长的距离才能送到IGBT逆变单元中。为保证PWM信号传输的准确性和可靠性,必须解决以下几个问题:首先是抗干扰问题,变频器工作时,IGBT的开关动作会产生高频干扰信号;其次是如何保证PWM信号的前、后沿质量,减少IGBT开关动作的过渡过程;最后是如何减少布线电感,尽可能缩短PWM信号传输距离,避免过多的内部连线。
1 总体设计
原则上说,从触发电路到IGBT栅极和发射极的引线应做到既短又一致。但随着变频调速装置功率的不断增大,装置的尺寸也在增大,散热条件要求更高。由于结构设计上的种种原因,真正做到这点有很多实际困难。
DSP产生的PWM信号既可以采用串行方式又能以并行方式进行传输,但这两种方式都有着各自的特点。采用并行方式传输信号(即每一个IGBT模块的栅控端都接一根信号线)会造成系统内部接线过多、接地困难,抗干扰性大大降低,这种情况尤以采用了多重化、多电平技术的变频装置为甚。若利用串行方式,PWM信号的传输速率又受到介质的极大限制。在目前诸多传输介质中,只有光纤具有损耗低、频带宽、重量轻、不受电磁干扰等突出优点。GI型光纤用LED做光源时,传输速率可达140Mbit/s,传输损耗可忽略不计。IGBT的工作频率通常很少用在15kHz以上,因此以异步串行方式高速传输PWM信号时,采用光纤作为传输介质是唯一的选择。
在串行的PWM信号送到IGBT的栅控端之前,还需将该信号转化为并行形式。尽管采用普通的串/并转换芯片可以实现上述功能,但这些芯片的最高工作频率有限,如74166的最高工作频率为35MHz,对于目前广泛采用多重化和多电平技术的变频装置来讲,这种工作频率显然有着较大的局限性。尤其是在实时性、快速性要求甚高的电机控制领域,不可能采用应答方式完成信号的传输,因此接收端需要有较强的纠错和容错能力。若采用普通的芯片,难以只用一两片芯片完成上述功能。但CPLD具有极强的灵活性,内含128个宏单元,最高工作频率可达167MHz(以Cypress CY37128为例),可以只用一两片芯片就能完成较复杂的逻辑功能,因此CPLD与光纤的结合是解决大功率变频器中信号传输的最好选择。系统信号流程图如图1所示。
2 通讯方案
异步串行格式的一个数据帧包括1位起始位和8位数据位,最后是停止位。起始位规定为0,8位数据位由高到低顺次发送,前7位组成1个编码字符,第八位为奇偶校验位。停止位可以选择1位、1位、2位。从系统实际要求出发,我们对标准的异步串行格式进行了修改,将三相PWM信号进行编码,用以下数据格式发送到信号转换单元:0-a3c3a2c2a1c1-V-1111。其中0为起始位,a1、a2、a3分别对应三相逆变桥每个桥臂的栅控信号,c1、c2、c3分别对应三相逆变桥每个桥臂的封锁信号,V是一位校验位,最后四个1为结束标志位。信号转换单元的CPLD接收到该信号后,将此串行PWM信号转换为并行形式。另一方面,为保证逆变单元能够正常工作,还需将逆变单元故障信号送到上位机以供故障诊断。
故障信号以以下串行编码格式送出:0-a1a2a3a4a5a6-V-1111,0为起始位,a1、a2、a3分别对应每个桥臂的驱动故障信号,a4为过热信号,a5、a6为通讯故障 信号,V为校验位,最后四个1为结束标志位。上位机板上的CPLD将此信号转换为并行形式。事实上,PWM信号和故障信号的处理过程是相同的。
对于异步串行通讯,通常要保证发送的信号在接收端能被正确接收,往往采用两类同步处理办法:一类是使用硬件手段实现通信协议的部分功能;另一类是使用各种短小的帧来实现通信功能。在本系统,由于实时控制对时间的要求,不可能采用上述形式的通讯方案。因此根据系统实际需要,数据传输采用起止式同步方案,即用“0”代表起信号,“1”代表止信号。在不发送信息时,一直发送止信号。第一个由“1”到“0”的转换表示字符的开始收端检测到这个转换后控制位时钟输出,以便对接受信号进行码位中点取样判决。
针对系统的实际要求,为确保数据通讯的正确性,在正常工作以前,DSP模块必须向信号转换单元固定发送一个标志字。只有当信号转换单元连续几次正确收到标志字后,才能建立正常通讯。在正常通讯时,为避免随机干扰的作用,只有在连续出现多次帧错误的情况下,信号转换单元才向上位机发出通讯故障信号,以确保系统工作的稳定性。
DSP PWM IGBT 电感 电路 LED CPLD Cypress VHDL 电子 相关文章:
- 基于FPGA的片上系统的无线保密通信终端(02-16)
- 基于Virtex-5 FPGA设计Gbps无线通信基站(05-12)
- FPGA作为协处理器在实时系统中的应用(04-08)
- 学习FPGA绝佳网站推荐!!!(05-23)
- 我的FPGA学习历程(05-23)
- 基于Spartan-3A DSP的安全视频分析(05-01)