微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 自适应跳频电台跳频控制系统设计与实现

自适应跳频电台跳频控制系统设计与实现

时间:11-04 来源:3721RD 点击:

1、设计摘要

本设计定位为一话音跳频通信系统,采用 Logistic混沌系统产生跳频序列,同时采用一种同步字头法与等待跟踪法相结合的新型同步方案--动态双频同步方案实现同步。理论分析和仿真试验均表明该方案实现方法简单、抗干扰性能优越、且同步建立迅速,具有很好的灵活性。在硬件实现上,拟在Virtex-II PRO(V2-Pro)开发系统中设计完成三个跳频电台(即3个用户)的收发信机,并加载相应信号,建立3个用户的同步通信,完成一小型跳频局域网的FPGA建模工作。三部跳频电台之一加载话音信号,采用开发系统中的音频编解码模块实现,另外两部电台加载随机数发生器所生成的二进制信号。根据电台话音通信质量情况可以对系统性能作出定性的评价,而本系统设计的误比特率计算模块的输出结果可以为系统性能评定给出定量的依据。

2、系统原理与技术特点

1、应用背景与研究意义

通信对抗作为电子战的一个重要组成部分,已得到各方的高度重视。采用跳频方式进行通信是一种有效的通信手段。

自适应技术与跳频技术相结合形成自适应跳频技术,是近年来跳频通信重要的一个发展方向。自适应跳频是将跳频频率点与干扰的出现联系起来,在跳频频段出现较大带宽的干扰时,系统能够自动识别干扰,实时自适应地改变跳频图案,跳到没有干扰的频段上去,以克服部分频带干扰的影响。法国的PR4G战斗跳频电台具有自适应跳频功能,当敌方施放宽带干扰时,电台能够自动切换到未被干扰信道上进行搜索,整个跳频通信网可以自动的转到无干扰或未被占用的频率上工作。干扰停止后可以自动回到原来的跳频方式工作,这种电台在40%的跳频信道受到干扰时,依然能够使话音可懂。

国内首创的"多合一"的自适应技术已经成功应用到新一代的短波战术跳频通信系统中。实际通信表明:自适应跳频电台能够有效利用50%左右的现有信道。由此可见,采用这种自适应跳频设计思想的第二代跳频电台,是大势所趋。因为新一代跳频电台的工作灵活性更大,可靠性更好,保密性更强,能够适合在各种复杂的电磁环境下进行可靠的通信。现代自适应通信实际电路的中断率可减少,线路利用率可提高,平均在的内信道误码率可以保持在,因而给高频通信,特别是军用通信带来明显的好处。但自适应通信由于增加了频率避扰功能,因此通信中会有多次同步,对失步后的再同步能力要求更高。另外现代军用跳频通信中,提高抗干扰性能最有效的方式就是提高跳频速率,跳速的提高也对同步的速度提出更高的要求。因此,研究一种针对自适应跳频通信的高效同步方案显得极为迫切。

2、系统原理及系统框图

(1)自适应双频跳频通信系统(与动态双频跳频同步方案相对应的自适应通信系统)

双频同步方案已被理论分析和仿真实验证明具有良好的同步性能,以三个用户为例,该方案可描述如下(见图1):

首先,所有用户的跳频序列发生器设置相同的初始状态,即具有相同密钥µ和x0,当通信双方只有一方开机或两方都未开机时,系统在预置频率上等待,不进行通信;都已开机后,用户在控制信号作用下从等待状态转为工作状态;

接着,每个用户在事先分配好的时隙内按照双频同步方案完成同步,即f11传输信息过程中,f21已经产生并准备好起跳,直到f11结束,马上转换到f21进行通信,与此同时,f11f31跳转,建立f31后等待,直到f21通信结束,系统转到f31上进行通信,同时f21f41跳转,…,如此循环下去,系统始终保持在两个交替向前动态变化的频率上进行通信,实现信息的保密传输;

最后,若其中某个用户在连续M个时隙内无消息发送,则认为该用户已下线,否则认为该用户出现故障或为迟入网用户。M值可根据系统要求及应用环境确定。

图1 多用户跳频通信系统双频同步方案

图1 多用户跳频通信系统双频同步方案

3、电台总体结构

图2 N个用户的双频跳频系统设计框图

图2 N个用户的双频跳频系统设计框图

除DDS和调制解调外,本设计各模块都将在后面有介绍,USB通信控制模块为与上位机的一个接口,通过该接口完成跳频参数的设置和更改。

(1)跳频序列(频率控制字)产生原理过程

跳频系统中,跳频带宽和可供跳变的频率(频道)数目预先定好。频道有频率控制字控制频率合成器(DDS)产生,且要求必须是伪随机的,图3为跳频序列发生器的结构图:

图3 跳频序列产生过程(以发射机为例)

图3 跳频序列产生过程(以发射机为例)

TOD(Time of Data)是实时时钟,PK(Primary Key)是跳频原始密钥,TOD与PK运算后即形成一种流动密钥,控制混沌迭代单元,然后对伪随机码进行线性变换,从而产生频率控制字,不同的频率控制字对应一张频率表中的一个频率。、

(2)

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top