创新的低待机损耗解决方案应用于反激式转换器
时间:09-10
来源:互联网
点击:
作者:飞兆半导体 邹明璋, 李全章, 詹振辉
节能技术已是当今电子产业的关注点,尤其最受到瞩目的是待机功耗。许多电子产品有相当比例的时间处于轻载或待机(空载)工作模式,因此,“能源之星”等规范标准在致力于提升电子设备所用电源适配器工作效能的同时,也注重提升轻载效能及降低待机功耗。为了降低待机功耗,来满足最新的“能源之星”规 范,飞兆半导体已将许多全新省电技术与功能应用于反激式转换器 (flyback converter)。根据实验的结果,在交流输入电源为230V情况下,将可以实现30mW极低的待机功耗。
本篇文章将探讨一些创新技术,包括:内建高压启动电路、待机时的极端脉冲降频模式(Deep Burst Mode)、极低的工作电流以及高压组件放电 X电容技术 (Ax-CAP™),以便节省放电电阻的功耗与使用,以上这些省电方法将使电源设计转向低成本、省电和高效率的最佳电源解决方案。
简介
美国能源之星(ENERGY STAR) 从2009 年1 月起,针对无载的电源消耗订定了严格的规范,表一所列是在不同的额定瓦数下的详细规定。
表一、 EPS v2.0 无载时能源损耗标准
当前,能源之星规范已不足以作为新一代电子产品对节能的要求,世界大厂如苹果、惠普和戴尔等响应环保议题,已经积极提出更为严苛的规范,对此,飞兆半导体已将无载损耗门槛降低至30mW。
图一中为典型的反激式转换器,下面分析电源转换器在无载下的损耗。主要的损耗 (不含变压器损耗) 包括了开关损耗(Switching loss) 以及由控制电路组件所造成的损耗。表二分别对这些主要损耗列出损耗估算式和一般的改进对策。
图一、典型的反激式转换器电路
表二、无载的主要损耗分析表(不含变压器损耗)
这些主要的无载或极轻载损耗,如图一所示将被划分A、B和C三个区域来讨论,应用飞兆半导体的创新技术,可分别降低这三部分的损耗。
首先为A区域,A区域里有消除电磁干扰的X电容器与并联的安规放电电阻,基本上这器件的选用必须符合安规等式(1),其中安规规定的放电时间须满足于1秒 内;并联接线方式势必于安规电阻上会有电能的功耗,且与输入电源电压的平方成正比增加,这个功耗可利用等式(2)得知,例如当输入电源为264V且放电电 阻为2MΩ时,将会有可观的35mW在此区域消耗。
等式(1)
等式(2)
FAN6756使用创新的内部高压器件对 X电容放电技术(Ax-CAP™),消去放电电阻的功耗并不需此电阻的使用仍可通过安规认证。
在图二中,当于无载或极轻载时拔去输入电源插头时,交流电压(VAC)会保持在一个近似稳定的电压加在X电容器两端,FAN6756通过HV引脚的取样逻辑去得知VAC 的电压变化,这个逻辑电路内部设置有一个比较电压 (VThreshold)去检测是否VAC电压值在芯片设定的延时时间(debouncing)内始终高于这个比较电压 (VThreshold),如果确认此时为拔插头的状况,FAN6756 将HV脚通过内部开关管连接至VDD,利用高压启动电流将X电容上的电荷释放;此功能只在无载或极轻载条件下有效,而取样逻辑的判断时间约为40ms。
图二 、拔去输入插头的相关电压行为
从图三中可得知HV引脚功能包括高压启动、输入电压取样电路和X电容放电机制, M1开关是连接高压和VDD之间的桥梁,由UVLO来控制。M1开关和R2路径用来实现高压启动功能, M3开关是通过一个频率信号控制来做输入电压取样控制,R2和R1分压形成一个输入电压 (VINAC)的取样到比较器的反相输入端;VINAC是用来侦测输入电源的电压值;VREF是用来做为放电判断的参考电压。假如VINAC总是高于 VREF,M2开关将被闭合,VDD电位将被放电到VDD_OFF,使得UVLO保护触发,UVLO保护将打开 M1开关并关闭M2,HV引脚将从X电容汲取所需的启动电流对VDD的电容重新充电,以达到放电功能。
图三、HV引脚的逻辑电路图
接下来介绍如何改进B区域的损耗,于B区域致力的目标是降低功率晶体管和 IC的功耗。功率晶体管主要功耗因素有VDD电压、Burst的时间长短和开关频率(FSW) 如等式(3)所示,在一般工作模式中(非保护模式),FAN6756使用创新技术去产生极低的UVLO电压约为6.5V,所以辅助绕组电压设定将可大幅降低;其次将Burst时间延长,降低在无载或极轻载时的工作频率与脉冲频率(fBurst)使FAN6756进入极端脉冲降频模式,进而降低开关损耗;另一方面在栅极无输出的情况下让IC的工作电流(IOP_Gate-off) 降低,以减少如等式(4)所示的IC静态损耗。图四为于高压无载条件下的实际量测波形,辅助绕组电压平均值大约为12V而栅极与栅极驱动 之间的距离大约为1.12秒,此种方法可以降低 B 区域**率晶体管和 PWM IC 的功耗。图五定义出等式 (3) 与等式 (4) 中的相关参数。
等式(3)
等式(4)
图四、输入230 VAC 的无载测试波形 (Ch1-Gate Ch2-VDD)
图五、等式(3) 与 (4) 的参数定义示意图
最后部分为 C 区域的功耗改善方式。
FAN6756 的反馈电压引脚 (FB)通过TL431与光耦合器获得次级端的输出电压信息,以此信号决定栅极的占空比;如图六所示,流经光耦合二极管的正向偏压电流(IF)经过电流转换比 (CTR)后,将可控制初级端的反馈电流 (IC)。
图六、 次级端电压调变(Secondary-side Regulation)电路
在无载条件下反馈电流 (IC)将呈现最大值,因为于此情况下会有最高的输出电压,进而引起最大的正向偏置电流于次级端,如果想减少反馈环路 (C区) 的无载功率损耗,势必需从PWMIC 本身来消减此功耗。
如何消减功耗呢?图七所示为光耦合器 (PC-817) 的电压-电流曲线,如果可以把反馈电流 (IC) 降至比0.5毫安或更低,这光耦合器 (PC-817) 将被迫工作在非线性区域,甚至进入“死区”。 FAN6756 依上述原理, 于无载情况下通过飞兆半导体的专利技术降低反馈电流 (IC) 的大小,使光耦合器几乎工作于非线性区,进而降低反馈环路的功耗。
图七、光耦合器 (PC-817) 电压-电流曲线
于无载情况下,FAN6756切换其内部的反馈阻抗 (ZFB),要减少反馈电流 (IC) 便必须将反馈阻抗(ZFB) 切换到大阻抗值,使光耦合器 (PC-817) 进入到非线性区,此方法亦可迟缓电压反馈响应,进而增加栅极驱动脉冲时间间隔 (tBurst);间接降低 B区域的功率晶体管功耗,等式(5)所示为光耦合器于次级端的功耗表示式。
等式(5)
从图八逻辑电路图中,可得知如何去开关反馈阻抗 (ZFB);于无载条件下,反馈电压值将与内部的 VREF1与VREF2作比较,若反馈电压小于VREF1,逻辑电路将会关闭栅极并将反馈阻抗 (ZFB) 开关至高阻抗值;反之当反馈电压大于VREF2时,逻辑电路将反馈阻抗 (ZFB) 切换回低阻抗值并使栅极继续输出,目的是使光耦合器于栅极将输出时可工作于正常的工作区域。
图八、反馈阻抗(ZFB)的开关逻辑电路图
节能技术已是当今电子产业的关注点,尤其最受到瞩目的是待机功耗。许多电子产品有相当比例的时间处于轻载或待机(空载)工作模式,因此,“能源之星”等规范标准在致力于提升电子设备所用电源适配器工作效能的同时,也注重提升轻载效能及降低待机功耗。为了降低待机功耗,来满足最新的“能源之星”规 范,飞兆半导体已将许多全新省电技术与功能应用于反激式转换器 (flyback converter)。根据实验的结果,在交流输入电源为230V情况下,将可以实现30mW极低的待机功耗。
本篇文章将探讨一些创新技术,包括:内建高压启动电路、待机时的极端脉冲降频模式(Deep Burst Mode)、极低的工作电流以及高压组件放电 X电容技术 (Ax-CAP™),以便节省放电电阻的功耗与使用,以上这些省电方法将使电源设计转向低成本、省电和高效率的最佳电源解决方案。
简介
美国能源之星(ENERGY STAR) 从2009 年1 月起,针对无载的电源消耗订定了严格的规范,表一所列是在不同的额定瓦数下的详细规定。
表一、 EPS v2.0 无载时能源损耗标准
当前,能源之星规范已不足以作为新一代电子产品对节能的要求,世界大厂如苹果、惠普和戴尔等响应环保议题,已经积极提出更为严苛的规范,对此,飞兆半导体已将无载损耗门槛降低至30mW。
图一中为典型的反激式转换器,下面分析电源转换器在无载下的损耗。主要的损耗 (不含变压器损耗) 包括了开关损耗(Switching loss) 以及由控制电路组件所造成的损耗。表二分别对这些主要损耗列出损耗估算式和一般的改进对策。
图一、典型的反激式转换器电路
表二、无载的主要损耗分析表(不含变压器损耗)
这些主要的无载或极轻载损耗,如图一所示将被划分A、B和C三个区域来讨论,应用飞兆半导体的创新技术,可分别降低这三部分的损耗。
首先为A区域,A区域里有消除电磁干扰的X电容器与并联的安规放电电阻,基本上这器件的选用必须符合安规等式(1),其中安规规定的放电时间须满足于1秒 内;并联接线方式势必于安规电阻上会有电能的功耗,且与输入电源电压的平方成正比增加,这个功耗可利用等式(2)得知,例如当输入电源为264V且放电电 阻为2MΩ时,将会有可观的35mW在此区域消耗。
等式(1)
等式(2)
FAN6756使用创新的内部高压器件对 X电容放电技术(Ax-CAP™),消去放电电阻的功耗并不需此电阻的使用仍可通过安规认证。
在图二中,当于无载或极轻载时拔去输入电源插头时,交流电压(VAC)会保持在一个近似稳定的电压加在X电容器两端,FAN6756通过HV引脚的取样逻辑去得知VAC 的电压变化,这个逻辑电路内部设置有一个比较电压 (VThreshold)去检测是否VAC电压值在芯片设定的延时时间(debouncing)内始终高于这个比较电压 (VThreshold),如果确认此时为拔插头的状况,FAN6756 将HV脚通过内部开关管连接至VDD,利用高压启动电流将X电容上的电荷释放;此功能只在无载或极轻载条件下有效,而取样逻辑的判断时间约为40ms。
图二 、拔去输入插头的相关电压行为
从图三中可得知HV引脚功能包括高压启动、输入电压取样电路和X电容放电机制, M1开关是连接高压和VDD之间的桥梁,由UVLO来控制。M1开关和R2路径用来实现高压启动功能, M3开关是通过一个频率信号控制来做输入电压取样控制,R2和R1分压形成一个输入电压 (VINAC)的取样到比较器的反相输入端;VINAC是用来侦测输入电源的电压值;VREF是用来做为放电判断的参考电压。假如VINAC总是高于 VREF,M2开关将被闭合,VDD电位将被放电到VDD_OFF,使得UVLO保护触发,UVLO保护将打开 M1开关并关闭M2,HV引脚将从X电容汲取所需的启动电流对VDD的电容重新充电,以达到放电功能。
图三、HV引脚的逻辑电路图
接下来介绍如何改进B区域的损耗,于B区域致力的目标是降低功率晶体管和 IC的功耗。功率晶体管主要功耗因素有VDD电压、Burst的时间长短和开关频率(FSW) 如等式(3)所示,在一般工作模式中(非保护模式),FAN6756使用创新技术去产生极低的UVLO电压约为6.5V,所以辅助绕组电压设定将可大幅降低;其次将Burst时间延长,降低在无载或极轻载时的工作频率与脉冲频率(fBurst)使FAN6756进入极端脉冲降频模式,进而降低开关损耗;另一方面在栅极无输出的情况下让IC的工作电流(IOP_Gate-off) 降低,以减少如等式(4)所示的IC静态损耗。图四为于高压无载条件下的实际量测波形,辅助绕组电压平均值大约为12V而栅极与栅极驱动 之间的距离大约为1.12秒,此种方法可以降低 B 区域**率晶体管和 PWM IC 的功耗。图五定义出等式 (3) 与等式 (4) 中的相关参数。
等式(3)
等式(4)
图四、输入230 VAC 的无载测试波形 (Ch1-Gate Ch2-VDD)
图五、等式(3) 与 (4) 的参数定义示意图
最后部分为 C 区域的功耗改善方式。
FAN6756 的反馈电压引脚 (FB)通过TL431与光耦合器获得次级端的输出电压信息,以此信号决定栅极的占空比;如图六所示,流经光耦合二极管的正向偏压电流(IF)经过电流转换比 (CTR)后,将可控制初级端的反馈电流 (IC)。
图六、 次级端电压调变(Secondary-side Regulation)电路
在无载条件下反馈电流 (IC)将呈现最大值,因为于此情况下会有最高的输出电压,进而引起最大的正向偏置电流于次级端,如果想减少反馈环路 (C区) 的无载功率损耗,势必需从PWMIC 本身来消减此功耗。
如何消减功耗呢?图七所示为光耦合器 (PC-817) 的电压-电流曲线,如果可以把反馈电流 (IC) 降至比0.5毫安或更低,这光耦合器 (PC-817) 将被迫工作在非线性区域,甚至进入“死区”。 FAN6756 依上述原理, 于无载情况下通过飞兆半导体的专利技术降低反馈电流 (IC) 的大小,使光耦合器几乎工作于非线性区,进而降低反馈环路的功耗。
图七、光耦合器 (PC-817) 电压-电流曲线
于无载情况下,FAN6756切换其内部的反馈阻抗 (ZFB),要减少反馈电流 (IC) 便必须将反馈阻抗(ZFB) 切换到大阻抗值,使光耦合器 (PC-817) 进入到非线性区,此方法亦可迟缓电压反馈响应,进而增加栅极驱动脉冲时间间隔 (tBurst);间接降低 B区域的功率晶体管功耗,等式(5)所示为光耦合器于次级端的功耗表示式。
等式(5)
从图八逻辑电路图中,可得知如何去开关反馈阻抗 (ZFB);于无载条件下,反馈电压值将与内部的 VREF1与VREF2作比较,若反馈电压小于VREF1,逻辑电路将会关闭栅极并将反馈阻抗 (ZFB) 开关至高阻抗值;反之当反馈电压大于VREF2时,逻辑电路将反馈阻抗 (ZFB) 切换回低阻抗值并使栅极继续输出,目的是使光耦合器于栅极将输出时可工作于正常的工作区域。
图八、反馈阻抗(ZFB)的开关逻辑电路图
飞兆 半导体 电子 电路 电流 电容 电阻 变压器 电容器 电压 比较器 电路图 PWM 二极管 相关文章:
- 用于低成本高效率离线LED驱动器的初级端调节技术(05-14)
- 通过初级端调节满足充电器能效规范(10-29)
- 大功率LED照明恒流驱动电源的设计(10-15)
- 利用低端栅极驱动器IC进行系统开发(12-21)
- 选择高压场效应管实现节能(06-13)
- 确定功率MOSFET的适用性(07-27)