高频汽车电源设计
时间:08-02
来源:互联网
点击:
瞬态过压保护
汽车系统中,大多数过压条件都是由感性负载的开关操作引起的瞬态过压,这类负载包括启动电机、燃油泵、车窗电机、继电器线圈、螺线管、点火器件和分布电感等。任何感性负载上的脉冲电流都会产生过压脉冲。根据幅度、持续时间的要求,可以选择滤波器、金属氧化物可变电阻、瞬态电压抑制器等抑制这类瞬态过压。图1至图4说明了ISO7637对过压抑制的要求,表1是对ISO7637规定的总结。
如上所述,电池电压不能直接供给低电压、高性能开关转换器,而是将电池连接到瞬态电压抑制起,如MOV或旁路电容及其后续的传统限幅电路。这些简单电路一般采用p沟道MOSFET构成(图5a)。p沟道MOSFET的额定电压为50"100V,具体取决于VBAT输入端的瞬态电压。
利用12V齐纳二极管(Z1)保护MOSFET的栅-源极,防止栅-源电压超过VGSMAX,当输入电压(VBAT)低于齐纳管Z2的击穿电压时,MOSFET处于饱和状态。输入电压发生瞬变时,MOSFET将阻止高于Z2击穿电压的电压通过。这个电路的缺点是使用了一个昂贵的p沟道MOSFET和许多外围元件。
另一方案是使用NPN晶体管,NPN管的基极电压嵌位在VZ3,将发射极电压调整在(VZ3-VBE)。这个方案成本较低,但VBE压降产生一定的损耗:PLOSS=IIN×VBE。另外,VBE压降也增加对电池最小工作电压的要求,尤其是在冷启动情况(图5b)。第三个方案是使用n沟道MOSFET,n沟道MOSFET的选择范围较广,而且便宜,可以作为隔离元件使用。其栅极驱动比较复杂,要求VG高于源极电压。
图5c给出了一个使用n沟道MOSFET开关的隔离电路,甩负载情况下,当VBAT电压超过设置门限时,MOSFET完全关闭。随后,只要VBAT电压高于设置门限,MOSFET将一直保持关闭状态。过压保护控制器MAX6398可以汽车过压(如甩负载或双电池供电)时,控制n沟道MOSFET,保护高性能电源,图6给出了方案的原理框图。图7至图9给出了实验室和实际工作环境下的噪声抑制测试结果,所采用的是n沟道MOSFET瞬态保护电路。
图7的MAX5073双buck转换器的输入纹波、开关波形测试结果,转换器分别工作在2.2MHz开关频率,输入电容纹波的的频率为4.4MHz(CH1=第2路时钟源;CH2=第1路时钟源;CH3=输入电容纹波;CH4=时钟输出)。
图中波形为图6所示保护器输出和两路转换器输出的响应特性,时间刻度分别为1s/cm(A)和1ms/cm(B)。(CH1=VBAT;CH2=VPROT;CH3=第1路输出;CH4=第2路输出)
图中波形为保护器输出和两路转换器输出的响应特性,时间刻度分别为1s/cm(A)和200μs/cm(B)。(CH1=VBAT;CH2=VPROT;CH3=第1路输出;CH4=第2路输出)
如图9所述,MAX6398功能模块完全支持汽车应用中的甩负载设计,提供低电压、高性能输出。利用保护电路、低电压、高频工作特性可有效节省电路板空间、降低成本。
汽车系统中,大多数过压条件都是由感性负载的开关操作引起的瞬态过压,这类负载包括启动电机、燃油泵、车窗电机、继电器线圈、螺线管、点火器件和分布电感等。任何感性负载上的脉冲电流都会产生过压脉冲。根据幅度、持续时间的要求,可以选择滤波器、金属氧化物可变电阻、瞬态电压抑制器等抑制这类瞬态过压。图1至图4说明了ISO7637对过压抑制的要求,表1是对ISO7637规定的总结。
如上所述,电池电压不能直接供给低电压、高性能开关转换器,而是将电池连接到瞬态电压抑制起,如MOV或旁路电容及其后续的传统限幅电路。这些简单电路一般采用p沟道MOSFET构成(图5a)。p沟道MOSFET的额定电压为50"100V,具体取决于VBAT输入端的瞬态电压。
利用12V齐纳二极管(Z1)保护MOSFET的栅-源极,防止栅-源电压超过VGSMAX,当输入电压(VBAT)低于齐纳管Z2的击穿电压时,MOSFET处于饱和状态。输入电压发生瞬变时,MOSFET将阻止高于Z2击穿电压的电压通过。这个电路的缺点是使用了一个昂贵的p沟道MOSFET和许多外围元件。
另一方案是使用NPN晶体管,NPN管的基极电压嵌位在VZ3,将发射极电压调整在(VZ3-VBE)。这个方案成本较低,但VBE压降产生一定的损耗:PLOSS=IIN×VBE。另外,VBE压降也增加对电池最小工作电压的要求,尤其是在冷启动情况(图5b)。第三个方案是使用n沟道MOSFET,n沟道MOSFET的选择范围较广,而且便宜,可以作为隔离元件使用。其栅极驱动比较复杂,要求VG高于源极电压。
图5c给出了一个使用n沟道MOSFET开关的隔离电路,甩负载情况下,当VBAT电压超过设置门限时,MOSFET完全关闭。随后,只要VBAT电压高于设置门限,MOSFET将一直保持关闭状态。过压保护控制器MAX6398可以汽车过压(如甩负载或双电池供电)时,控制n沟道MOSFET,保护高性能电源,图6给出了方案的原理框图。图7至图9给出了实验室和实际工作环境下的噪声抑制测试结果,所采用的是n沟道MOSFET瞬态保护电路。
图7的MAX5073双buck转换器的输入纹波、开关波形测试结果,转换器分别工作在2.2MHz开关频率,输入电容纹波的的频率为4.4MHz(CH1=第2路时钟源;CH2=第1路时钟源;CH3=输入电容纹波;CH4=时钟输出)。
图中波形为图6所示保护器输出和两路转换器输出的响应特性,时间刻度分别为1s/cm(A)和1ms/cm(B)。(CH1=VBAT;CH2=VPROT;CH3=第1路输出;CH4=第2路输出)
图中波形为保护器输出和两路转换器输出的响应特性,时间刻度分别为1s/cm(A)和200μs/cm(B)。(CH1=VBAT;CH2=VPROT;CH3=第1路输出;CH4=第2路输出)
如图9所述,MAX6398功能模块完全支持汽车应用中的甩负载设计,提供低电压、高性能输出。利用保护电路、低电压、高频工作特性可有效节省电路板空间、降低成本。
电路 汽车电子 电压 电感 电容 电源模块 电源管理 开关电源 Maxim 电子 电流 PWM 继电器 滤波器 电阻 MOSFET 二极管 相关文章:
- 汽车收音机TDA7513射频电路应用指南(01-24)
- Power Integrations推出智能电表技术应用网页和参考设计(08-23)
- 基于Atmega8的实用车载空调控制器电路(09-05)
- 车用交流发电机充电指示电路的改进设计(01-14)
- 汽车HID前照灯高压启动电路及控制策略(01-07)
- 车载信息中心电路保护措施(02-24)