未来展望——FSI 和BSI 图像传感器技术
时间:12-27
来源:互联网
点击:
FSI的缺点
从一开始,FSI就面临着使入射光通过硅片金属层到达光电检测器的挑战。要加大孔径,以提高光聚集度,可采用共享元件来设计像素,以尽量减少光电二极管上的电路。这种方法在提高QE的同时,也带来了不对称性,其后必须予以补偿。此外,这些孔径又产生衍射效应,而且更大的像素堆叠高度使得串扰抑制变得更为困难。虽然光导管可以减轻这些效应,但光导管本身也存在损耗。
像素从1.4微米缩小到1.1微米,有关光导管的设计挑战大幅度增加。随着像素的不断缩小,即使采用光导管,衍射效应也会妨碍光的接收。此外,FSI无法利用所有可用金属互连层来进行片上处理,在1.1微米像素下,这个缺陷可能更为突出。
BSI技术概述
采用BSI构建像素,光线无需穿过金属互连层(见图3)。然而,这仍然对光路径带来一些限制,幸运的是,促使FSI技术不断改进的许多知识和技术进步可以直接应用于BSI技术,从而为提高 BSI 性能打下了坚实的基础。

图4 30 lux照度下,800万像素、1.4微米像素尺寸的FSI传感器产生的图像
BSI技术的第一步是汇聚进入光电二极管光学区域的入射光,其光学要求与FSI相同,不过现在微透镜的位置更接近光电二极管,需要淀积更厚的微透镜材料层,以获得更短的焦距。与由互连层创建的自然孔径的FSI技术不同,BSI需要最大限度地减小串扰,因而必需通过在光电二极管上淀积金属栅格(metal grid)来增加一个孔径。
由于BSI晶圆是翻转(inverted)的,故入射光首先会入射到光电二极管附近的硅体材料。这时,由于漫射到邻近像素或在背面界面的漫射与重新汇合,光线会形成串扰而产生损耗。蓝光尤其容易发生这种现象,导致蓝色QE减小,而串扰增加。可喜的是,通过利用先进的背面处理和更深的光电二极管来捕获蓝光,可以解决这些问题。
BSI的优点
BSI的主要优势是能够使电气组件与光线分离,使光路径能够被独立地优化,反之亦然。而且,这无需在金属层或光导管中创建一个孔径,从而消除了入射光的损耗机理。其最终结果是BSI能够获得更高的QE。
BSI图像传感器超越传统FSI器件的另一个主要优势是像素的光堆叠高度更低。但应当注意的是,相比具有光导管的FSI架构,这一优势并不明显,这是因为对于后者,由于光线在互连堆叠的顶部聚集,并由光导管限制和导引到光电检测器表面,有效光堆叠高度也会减小。
对于1.4微米BSI像素,QE范围通常为50"60%,而串扰范围为15"20%。在1.4微米下,BSI的高QE结合略微受影响的串扰,带来可与1.4微米FSI像素相媲美的总体图像质量。应该注意的是,1.4微米BSI技术虽然刚刚进入市场,但正如以往的像素技术一样,其性能预计也将逐渐提升。今天,1.1微米BSI像素尚处于早期开发阶段,不过一旦它们能够投入生产,预计QE将达到50"60%,串扰为10"30%。届时这些1.1微米BSI像素将会胜过1.1微米FSI像素,因为FSI像素在缩小至1.1微米时存在制造难题。
BSI的缺点
BSI器件架构本身带来了串扰挑战,导致无法精确地收集光子,因而减低了色彩修正矩阵的性能,并引起SNR下降。BSI还需要额外的晶圆粘片和减薄(mounting and thinning) 、背面处理对准(alignment for backside processing)以及背面界面钝化(passivation)对准等制造处理工艺,所有这些工艺都会增加成本和容差。此外,以往在前面(front side)进行的CFA和微透镜处理,现在必须在背面进行。这时,由于晶圆翘曲以及材料背面上结构对准存在的挑战,对准变得更加困难。
BSI的相关成本较高,导致某些BSI传感器制造商瞄准成本较不敏感的高端相机应用,业界权威人士承认BSI技术的平均销售价格较高。影响成本的因素还有成本较高、更先进的工艺技术等等。
BSI的另一个缺点是需要背面钝化,相比前表面处理,背面处理比较麻烦,从而使处理工艺选项非常有限。此外,晶圆的前表面已有载具晶圆键合(carrier wafer bond)和金属化,这也限制了处理工艺选项。因而,钝化层需要淀积而不是生长在背表面上。而且,钝化层中的缺陷将会影响背表面的缺陷,导致更高的喑电流和更大的热像素缺陷可能性。
创建BSI图像传感器还需要新工艺的开发,而且新技术走向成熟和良率提升需要一定的时间,大多数图像传感器销售商都正在投资BSI工艺开发,克服这些障碍只是时间问题。
结论
市场对于完美像素的需要正在推动图像传感器企业每年花费数亿美元进行研发。至今为止,大多数像素研发的受益者都是FSI技术,它能够以高性价比的方式将像素缩减至1.4微米,同时每年均可提升给定像素尺寸的性能。
FSI技术拥有非常有吸引力的性能、成本和价值定位,是如今图像传感器使用的主流技术,它有助于推动相机在手机、笔记本电脑、数字视频和数码相机以及无数其它领域的使用。尽管业界发展趋势是更高的分辨率和更小的像素尺寸,但需要“较大”像素和出色的弱光图像质量的应用仍在不断增多,FSI尤其适合于需要“较大”像素的应用,在这些应用中,弱光和总体成像性能是至关重要的考虑。象数码相机和视频摄像机、手机相机、PC和监控设备中的HD视频等应用将需要由较大像素尺寸(如1.4和1.75微米像素)实现出色的图像质量,这些较大的像素更倾向于FSI解决方案,如Aptina A-Pix FSI技术。而且,鉴于BSI的成本较高,在这些较大像素应用中,高性能、高性价比的FSI传感器将挑战BSI技术降低价位的能力。
近年来,由于FSI技术的未来发展局限性已经变得十分明显,业界已将某些研发转向BSI技术。BSI技术现在已经用于高端相机中,同时,它的性能将会继续提升,不久将在主流大批量应用中得到广泛使用,尤其是那些需要1.1微米及以下尺寸的应用。
未来,由于市场对不同应用需求的分化,有理由相信FSI和BSI技术将会共存。FSI图像传感器技术的提升将满足对于出色图像和视频性能的不断增长的需求。同时,BSI技术的进步将支持极小像素尺寸,以驱动体积更小的高分辨率相机的应用。
从一开始,FSI就面临着使入射光通过硅片金属层到达光电检测器的挑战。要加大孔径,以提高光聚集度,可采用共享元件来设计像素,以尽量减少光电二极管上的电路。这种方法在提高QE的同时,也带来了不对称性,其后必须予以补偿。此外,这些孔径又产生衍射效应,而且更大的像素堆叠高度使得串扰抑制变得更为困难。虽然光导管可以减轻这些效应,但光导管本身也存在损耗。
像素从1.4微米缩小到1.1微米,有关光导管的设计挑战大幅度增加。随着像素的不断缩小,即使采用光导管,衍射效应也会妨碍光的接收。此外,FSI无法利用所有可用金属互连层来进行片上处理,在1.1微米像素下,这个缺陷可能更为突出。
BSI技术概述
采用BSI构建像素,光线无需穿过金属互连层(见图3)。然而,这仍然对光路径带来一些限制,幸运的是,促使FSI技术不断改进的许多知识和技术进步可以直接应用于BSI技术,从而为提高 BSI 性能打下了坚实的基础。

图4 30 lux照度下,800万像素、1.4微米像素尺寸的FSI传感器产生的图像
BSI技术的第一步是汇聚进入光电二极管光学区域的入射光,其光学要求与FSI相同,不过现在微透镜的位置更接近光电二极管,需要淀积更厚的微透镜材料层,以获得更短的焦距。与由互连层创建的自然孔径的FSI技术不同,BSI需要最大限度地减小串扰,因而必需通过在光电二极管上淀积金属栅格(metal grid)来增加一个孔径。
由于BSI晶圆是翻转(inverted)的,故入射光首先会入射到光电二极管附近的硅体材料。这时,由于漫射到邻近像素或在背面界面的漫射与重新汇合,光线会形成串扰而产生损耗。蓝光尤其容易发生这种现象,导致蓝色QE减小,而串扰增加。可喜的是,通过利用先进的背面处理和更深的光电二极管来捕获蓝光,可以解决这些问题。
BSI的优点
BSI的主要优势是能够使电气组件与光线分离,使光路径能够被独立地优化,反之亦然。而且,这无需在金属层或光导管中创建一个孔径,从而消除了入射光的损耗机理。其最终结果是BSI能够获得更高的QE。
BSI图像传感器超越传统FSI器件的另一个主要优势是像素的光堆叠高度更低。但应当注意的是,相比具有光导管的FSI架构,这一优势并不明显,这是因为对于后者,由于光线在互连堆叠的顶部聚集,并由光导管限制和导引到光电检测器表面,有效光堆叠高度也会减小。
对于1.4微米BSI像素,QE范围通常为50"60%,而串扰范围为15"20%。在1.4微米下,BSI的高QE结合略微受影响的串扰,带来可与1.4微米FSI像素相媲美的总体图像质量。应该注意的是,1.4微米BSI技术虽然刚刚进入市场,但正如以往的像素技术一样,其性能预计也将逐渐提升。今天,1.1微米BSI像素尚处于早期开发阶段,不过一旦它们能够投入生产,预计QE将达到50"60%,串扰为10"30%。届时这些1.1微米BSI像素将会胜过1.1微米FSI像素,因为FSI像素在缩小至1.1微米时存在制造难题。
BSI的缺点
BSI器件架构本身带来了串扰挑战,导致无法精确地收集光子,因而减低了色彩修正矩阵的性能,并引起SNR下降。BSI还需要额外的晶圆粘片和减薄(mounting and thinning) 、背面处理对准(alignment for backside processing)以及背面界面钝化(passivation)对准等制造处理工艺,所有这些工艺都会增加成本和容差。此外,以往在前面(front side)进行的CFA和微透镜处理,现在必须在背面进行。这时,由于晶圆翘曲以及材料背面上结构对准存在的挑战,对准变得更加困难。
BSI的相关成本较高,导致某些BSI传感器制造商瞄准成本较不敏感的高端相机应用,业界权威人士承认BSI技术的平均销售价格较高。影响成本的因素还有成本较高、更先进的工艺技术等等。
BSI的另一个缺点是需要背面钝化,相比前表面处理,背面处理比较麻烦,从而使处理工艺选项非常有限。此外,晶圆的前表面已有载具晶圆键合(carrier wafer bond)和金属化,这也限制了处理工艺选项。因而,钝化层需要淀积而不是生长在背表面上。而且,钝化层中的缺陷将会影响背表面的缺陷,导致更高的喑电流和更大的热像素缺陷可能性。
创建BSI图像传感器还需要新工艺的开发,而且新技术走向成熟和良率提升需要一定的时间,大多数图像传感器销售商都正在投资BSI工艺开发,克服这些障碍只是时间问题。
结论
市场对于完美像素的需要正在推动图像传感器企业每年花费数亿美元进行研发。至今为止,大多数像素研发的受益者都是FSI技术,它能够以高性价比的方式将像素缩减至1.4微米,同时每年均可提升给定像素尺寸的性能。
FSI技术拥有非常有吸引力的性能、成本和价值定位,是如今图像传感器使用的主流技术,它有助于推动相机在手机、笔记本电脑、数字视频和数码相机以及无数其它领域的使用。尽管业界发展趋势是更高的分辨率和更小的像素尺寸,但需要“较大”像素和出色的弱光图像质量的应用仍在不断增多,FSI尤其适合于需要“较大”像素的应用,在这些应用中,弱光和总体成像性能是至关重要的考虑。象数码相机和视频摄像机、手机相机、PC和监控设备中的HD视频等应用将需要由较大像素尺寸(如1.4和1.75微米像素)实现出色的图像质量,这些较大的像素更倾向于FSI解决方案,如Aptina A-Pix FSI技术。而且,鉴于BSI的成本较高,在这些较大像素应用中,高性能、高性价比的FSI传感器将挑战BSI技术降低价位的能力。
近年来,由于FSI技术的未来发展局限性已经变得十分明显,业界已将某些研发转向BSI技术。BSI技术现在已经用于高端相机中,同时,它的性能将会继续提升,不久将在主流大批量应用中得到广泛使用,尤其是那些需要1.1微米及以下尺寸的应用。
未来,由于市场对不同应用需求的分化,有理由相信FSI和BSI技术将会共存。FSI图像传感器技术的提升将满足对于出色图像和视频性能的不断增长的需求。同时,BSI技术的进步将支持极小像素尺寸,以驱动体积更小的高分辨率相机的应用。
- 航天器DC/DC变换器的可靠性设计(02-12)
- 安森美90W太阳能LED街灯高能效解决方案(05-18)
- 中国安防电子产业发展现状与展望(05-31)
- 用CMOS-NAND门控制水泵(08-10)
- 现实性分析:RFID逐步释放其潜力(06-21)
- 基于 SoPC 的震动信号采集设备设计(08-14)
