微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 工业电子 > 无铅转移与过渡技术

无铅转移与过渡技术

时间:11-10 来源:互联网 点击:





5.3 可焊性涂层对可靠性的影响

可焊性涂层包括元器件引脚与PCB焊盘的可焊性涂层。对于元器件的可焊性涂层,转换到无铅之后,传统的占主导地位的SnPb涂层不能应用。从目前实际应用情况来看,主要包括纯Sn,SnBi,NiPdAu,NiAu等几种。对于无源器件而言,以纯Sn为主;对于引线框架类封装,NiPdAu具有较强的优势;对于BGA焊球,SnAgCu占主导地位;对于倒装芯片,SnAg与SnCu最受欢迎。在可靠性影响方面,主要是纯Sn的锡须问题,这在细间距应用方面比较突出。

在PCB可焊性涂层方面,替代传统的热风整平(HASL)SnPb包括浸银(ImAg)、浸锡(ImSn)、ENIG(Ni/Au)、OSP等。在可靠性影响方面,对于浸锡(ImSn)涂层,重点考虑锡须问题;对于浸银(ImAg)涂层,考虑微空洞对可靠性的影响,一般超过4~5个50μm左右大小的微空洞就不可接受,关键是控制浸银工艺;对于ENIG涂层,重点考虑“黑盘”问题,关键是控制淀积Au与Ni的速率、厚度、均匀性、pH值控制以及磷的含量,有关技术要求可参考IPC-4552(印制电路板化学镀镍/浸金涂层的技术条件)[7]。

5.4 锡须(tinwhisker)

如前所述,无铅转移后,纯Sn作为元器件引脚与PCB可焊性涂层得到更广泛的应用,但在其表面可能生长锡须,这是一严重的可靠性问题,是无铅可靠性应用面临的严峻挑战之一。相应地,锡须成为无铅可靠性研究的热点。锡须是在纯锡表面生长出来的单晶组织,与枝晶有着本质的区别。影响锡须生成与生长的可能因素包括:晶粒尺寸、晶粒大小、晶粒方向、工艺应力、外部应力、温度、湿度、氢含量、有机绝缘物等。遗憾的是,但目前为止,尚未得到理想的研究结论,相当多的理论分析结果与试验结果相矛盾。

目前,经研究基本验证并得到认同的是:应力是产生锡须的关键因素,特别是压应力。应力的来源包括镀锡过程中的工艺应力、IMC成形、外部施加的应力、CTE不匹配等。减少锡须生成的有以下可能方法:

(1)不要使用亮锡(亮锡电镀后的残余压应力大);

(2)用晶粒尺寸较大的灰锡可减缓whisker生长速度;

(3)用较厚的灰锡镀层(8~10μm,外表面无应力);

(4)电镀后24h内退火(150℃ 2h或170℃1h),以减少Sn层内应力;

(5)电镀后24h内回流焊接,作用与退火相同;

(6)用Ni或Ag阻挡层(0.1~2μm)防止Cu扩散形成Cu6Sn5的IMC;此外Ni层在Sn膜下产生张应力可降低锡须生成;

(7)采用如NiPdAu等涂层替代纯锡涂层。

在标准化方面,JEDEC制订了测试锡须生长的规范JESD22A121[8],规范了锡须加速测试条件、锡须尺度测量方法、各级别电子产品可以接受的锡须长度等。

6 小结

本文阐述了在无铅转移过程中涉及的可制造性与可靠性问题,包括无铅转移对元器件、印制电路板与焊点的影响以及它们相互之间的兼容问题。重点论述了前向兼容与后向兼容、锡须、空洞与微空洞、可焊性涂层以及如何避免无铅转移中出现的问题。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top