微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 工业电子 > 无铅转移与过渡技术

无铅转移与过渡技术

时间:11-10 来源:互联网 点击:
1 引言

近几十年来,电子电气工业在给人类带来方便和益处的同时也给社会带来堆积如山的电子垃圾,电子电气垃圾给全球生态环境造成的消极影响正越发严峻。为了控制电子垃圾对生态环境的污染,欧盟委员会于2003年颁布了《关于在电子电器设备中限制使用某些有害物质指令》(简称ROHS指令)[1],并于2006年7月1日开始实施。无铅焊料相对更高的熔点、较低的润湿能力与较高的弹性模量等工艺、物理、力学特征使得无铅的可制造性与可靠性问题更加突出,尤其在目前的过渡阶段,有铅与无铅的混合组装引起的兼容问题尤为突出。

2 无铅对元器件的要求与影响

无铅焊接,对元器件提出了更高的要求,最根本的原因在于焊接温度的提高。传统锡铅共晶焊料的熔点为183℃,而目前得到普遍认可与广泛采用的锡银铜(SAC)无铅焊料的熔点大约为217℃,使得热致失效(特别是热敏感与潮湿敏感器件)大大加剧。

热敏感器件包括光学组件、电解电容、连接器等,焊接温度的提升虽不是很高,但可能是致命的。如某一常规电容在焊接温度为225℃时完好无缺,但当焊接温度升高到250℃时便出现了严重的翘曲问题。针对无铅条件下元器件的耐高温问题,IPC在最新的标准J-STD-020中[2],依据封装体的厚度、体积制订了相应的回流焊接峰值温度要求,如表1所示。值得注意的是在无铅条件下,IPC标准与日本标准基本一致。






对于诸如PBGA等潮湿敏感器件(MSD),随着工艺温度的提升,元器件吸入的潮气在高温作用下气化并急剧膨胀,形成很大的压力,可能引起“爆米花”、分层、裂纹等问题。因为压力与温度的增加是指数关系,所以对于MSD的处理需要特别注意。IPC在标准J-STD-020与J-STD-033中[3]分别对MSD的分级及其处理作了规范,可以作为应用参考。此外,在使用时还应当注意以下两点:(1)峰值温度每提高5~10℃,潮湿敏感等级(MSL)就下调1~2级;(2)对于开封后没有使用完的MSD,放回干燥箱的时间保证为暴露在空气中时间的5倍以上才可继续使用,因为吸气容易排气难。

此外,温度梯度对元器件的可靠性影响同样值得关注。较高的温度梯度将降低元器件内部的互连可靠性,主要是由于热不匹配造成的封装体与硅芯片之间的分层、裂纹等问题。在无铅条件下,大的温度梯度既可能出现在升温阶段,也可能出现在焊后冷却阶段。为了保障无铅焊点的可靠性,对冷却速率有一定的要求,冷却速率太慢,一方面使得金属间化合物(IMC)增长太厚;另一方面,结晶组织粗化,以及可能出现板块状的Ag3Sn,这些都将大大降低焊点的可靠性。因此,无铅焊接设备都设立了强制冷却区,一般情况下,冷却速率最小要高于1.2℃/s,但不要高于2?5~3℃/s。

另外,影响可靠性的主要因素是元器件的可焊性涂层,主要是指引脚涂层无铅化所引起的锡须问题。为了保障可靠性,可以将EMS论坛无铅PCB组装关于ROHS符合性元器件供应商转移的指南,与iNEMI的高可靠性无铅组装的元器件要求作为参考。

3 无铅对PCB的影响与要求

无铅焊接相对高的温度给PCB带来一系列问题。具体而言,体现在以下几个参数。

3.1 玻璃转化温度Tg

在传统锡铅工艺条件下,玻璃转化温度Tg被认为是最重要的参数。因为,在Tg以上,PCB物理特性发生很大变化,特别是热膨胀系数(CTE)。图1所示为常规PCB基材FR-4、铜(Cu)以及镀通孔随温度上升的热膨胀特性图,从图中可以看出,在超过Tg以后, Z轴的CTE急剧上升,与Cu的热不匹配问题大大加剧,因而期望更高的玻璃转化温度。






3.2 分解温度Td

在无铅转移研发初期,认为更高的Tg能够解决无铅的高温问题。相关研究进一步表明:Tg依然是非常重要的参数,但单纯高的Tg不能完全解决问题,如图2所示为Tg高达175℃的增强型FR-4在无铅工艺条件下的分层问题。这一事实表明,还有其他同等重要的工艺参数。分解温度(Td)被认为就是其中之一。当温度高于Td,树脂材料化学键断裂引起不可逆的物理与化学性能的严重损伤,一般定义为PCB基材重量减少5%的温度,也有其他如重量减少2%的温度定义为Td。Chrys Shea等人[4]研究表明,2%的定义与无铅情况更接近,如前述的FR-4材料按照5%的定义Td高达320℃,而实际无铅焊接温度为250℃就发生严重问题,相差较远;如果采用2%的定义,大致在250~260℃,比较吻合。






其他重要的参数包括分层温度、吸水率、持续高温能力即在某一高温下分层时间如250℃/50s以及Z轴CTE,尤其是Tg以后的CTE。此外,从理论上讲,由于无铅焊料相对较差的润湿能力,必然要求活性相对较高的焊剂和相对较高的焊接温度。这使得焊后PCB的残留物及其腐蚀特性加剧,影响表面绝缘电阻(SIR),从而PCB的电化学腐蚀(如CAF)可能会更加突出,在恶劣环境下使用的电子产品(如汽车电子)等应当加以严格控制。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top