微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 工业电子 > 深亚微米时代eASIC结构化ASIC的路越走越宽

深亚微米时代eASIC结构化ASIC的路越走越宽

时间:09-28 来源:互联网 点击:
泄漏功耗  

在ASIC的替代品中,可编程逻辑器件FPGA堪称平民与贵族。说它是平民,是因为不需要掩模,不产生NRE费用,入门门槛低,FPGA深受广大设计者的欢迎。由于具有高度的灵活性,相对简单的EDA工具和设计流程,用户可以方便将FPGA器件编程为自己所需要功能的芯片。因此,FPGA占据了很多ASIC的领域,特别是在诸如通信、仪器、工业、军工、航天等许多具有中小批量、多品种特点的市场,取得了骄人的业绩。说它是贵族,是因为FPGA用硅片面积来换取灵活性的,天生不足表现为资源利用率低、价格昂贵。FPGA中80%的硅片面积被用作布线路由,要多绕许多路径,要过许多用晶体管搭建的开关。将基于SRAM的查找表LUT逻辑单元组成逻辑电路所需要的逻辑层数比ASIC多。因此,速度远远落后ASIC。即使到了65nm,FPGA在性能上也只能相当于180nm的ASIC,而成本上与180nm的ASIC芯片并没有优势。

尽管如此,FPGA在技术上近20年来发展迅速,向密度更高、速度更快发展,向低成本、低价格的片上系统方向发展,试图拉近与ASIC的距离。Xilinx 已经发布了65nm Virtex-5和Spartan 3。 Altera也发布了65nm Stratix III, 最近又发布了40-nm Stratix IV。为了适应多方面应用的需求,FPGA也在不断改良架构,包括减少逻辑层次,改进构造块之间的信号互连等。还嵌入了处理器、乘法器、收发器等一些标准单元的硬IP Core。  

不过,FPGA碰到了一个难以克服的顽疾--堵不住的泄漏电流、压不低的静态功耗。半导体工艺不断细化的一个显著好处是芯片的动态功耗不断下降。因为可以采用更低的工作电压,此外更小的尺寸有助于减小芯片内部分布电容。但在另一方面,由于晶体管体积的缩小,包括门极(栅极)泄漏电流以及源-漏泄漏电流在内的静态泄漏却在逐渐增加,因此带来的功耗成了一大顽疾。门极泄漏就是电子穿过阻止其运动的绝缘层产生的泄漏电流。而在晶体管处于关断状态时,仍会有少量电子从源极向漏极流动,这就是源-漏泄漏。早在2004年,Intel发现因静态泄漏导致的功耗已占到芯片总功耗的25%。进入65nm之后,随着管子体积的缩小,标准薄氧化层晶体管的静态泄漏急剧增大。为了同时实现高密度和低漏电流,业界各方面都在不懈努力研究各种减少泄漏电流的方法。一种称为三重门极氧化层(triple-oxide)技术的工艺通过有选择地增加门极氧化层厚度来减少泄漏电流,同时又不牺牲性能。尽管这三重门极氧化层仍很薄,但这些晶体管的确展现出比标准薄氧化层晶体管更低的漏电流。Intel公司则推出了针对45nm技术的HK+MG晶体管。所谓HK(High-K)就是采用相对二氧化硅而言具有很高绝缘常数的材料,它可在晶体管的门极和通道间产生一个强大的场效应,并呈现出很高的电子绝缘特性。采用金属门MG (Metal Gate)还能增强门的场效应。因此,HK+MG组合有助于显著减少漏电流,增加门电容和驱动电流。  

虽然技术上设法减少了泄漏电流,但是由于FPGA的基本逻辑单元颗粒是基于SRAM的查找表LUT,还需要用大量的开关晶体管。有同样功能的FPGA芯片的晶体管数量远远多于ASIC芯片,因而功耗会远远大于ASIC芯片,这样必定增加了系统的热负荷。  

还需要指出的一点是,在设计流程方面人们往往认为ASIC的后端设计有着非常长的时间和复杂度,也容易出问题。事实上,进入DSM阶段之后FPGA的后端的复杂度也并非想象的那么容易。如果同样的设计在ASIC的后端实现中很困难,那么在FPGA中情况有可能更加恶化。因为同样功能的逻辑电路映射在FPGA中的逻辑层数会比映射在ASIC中的逻辑层数增加很多,导致时序收敛更加困难。  

为了克服FPGA的功耗大、价格高的缺点,FPGA厂商也都推出了自己的结构化ASIC技术,比如Altera的HardCopy。HardCopy是通过重新映射,把原来的FPGA逻辑用结构化的ASIC方式实现。这种方案能够比FPGA明显地降低芯片的尺寸。但是带来的后果是时序有变化。这种方案由于需要掩模,从而也有NRE的问题。此外,HardCopy只能针对少数几种型号的FPGA,不适用其全系列器件。  

eASIC 实现ASIC价值重归  

为了减少标准单元ASIC设计的高昂的前期投入,简化设计流程,规避市场风险,结构化ASIC应运而生。它们试图在标准单元ASIC和FPGA之外中找到另外一条定做芯片的途径。结构化ASIC是半成品,要做成客户定制的芯片仍然需要掩模,只不过掩模层数少一些。总的来说,结构化ASIC能够节省一半的NRE费用和设计时间,芯片的性能和功耗接近标准单元ASIC。但芯片价格的约是标准单元的1.5 "2倍,因为其密度大约只有标准单元ASIC的50%"75%左右。结构化ASIC的市场定位决定了其在ASIC与FPGA的夹缝中求生。或许是因为半导体工艺升级换代太快了的缘故,大多数结构化ASIC的优势还没有来得及完全发挥出来,就被新工艺淘汰出局。直到在90nm之前,大多数结构化ASIC在商业运作上都没有FPGA成功。客户要么更喜欢便宜的标准单元ASIC,要么更喜欢没有风险的随时都可重新编程的器件FPGA。除非把做ASIC的NRE降到微不足道,还要让设计工程师避开复杂的后端设计的困扰,否则难以扭转结构化ASIC尴尬的局面。eASIC公司率先做到了这一点。

eASIC在2006年推出90nm的结构化ASIC产品Nextreme。与其他结构化ASIC不同之处在于,只要用单一过孔层就可实现各种设计电路的定制。对所有的设计而言,从硅片到每层金属层都是通用的,唯一不同的是一层过孔Via6。?由于这一过孔层可直接用激光束打造,实现无掩模定制样片,处理时间快了10倍。因而无需NRE费用,样片时间缩短到4周。量产时也只要一层过孔掩模,所发生的费用很容易被消化。金属布线标准化和过孔可编程定制是eASIC在结构化ASIC上的独门突破性技术。在短短1年半时间内,eASIC 就完成了120多个项目设计。令人惊讶的是,在90nm Nextreme ASIC产品快速成功的基础上,eASIC跳过了65nm直接奔向45nm,2008年8月4日发布了其45nm产品Nextreme-2,站在了业界的前列。  

在45nm结构化ASIC产品Nextreme-2系列中,eASIC基本保持了第二代产品中的全金属布线,单一过孔编程定制的体系,只是将这一定制过孔层从第6层调整到了第4层。但在架构上、基本逻辑单元eCell的颗粒结构上和周边的资源配置上做了重大改进。  

eASIC改良了查找表(LUT)的结构以进一步提供速度、降低功耗。摒弃了原有基于SRAM的查找表LUT结构,改用可编程过孔Via接地或者接Vcc来替代SRAM的输出。此外,还省去了LUT第一级的开关晶体管,如图所示。因此省掉了大量的晶体管。大大降低了静态泄漏,提高了开关速度,使效率达到了最高。在同样的工艺水平中, 泄漏可以减少12%,速度提高17%,面积减少40%。与前一代90nm产品相比,静态泄漏减少了50%,动态功耗降低70%,延迟缩短了45%。此外,通过过孔编程,切断芯片内部闲置的单元和存储器的供电,还采取时钟选通控制睡眠模式、动态功率管理。Nextreme-2系列采用特许半导体的45nm低功耗工艺生产制造,其逻辑组织架构能够提供高达700 MHz的性能。与最新工艺的FPGA相比,由于结合了三重氧化层晶体管、45nm 低功耗工艺和 eASIC 专利的功率管理结构, Nextreme-2的功耗可以降低80%以上。  

Nextreme-2系列还嵌入了硬IP Core,包含多达56条 MGIO (多G比特输入输出口)。每条IO都能工作在6.5Gbps,总计提供364Gbps带宽。在高性能网络应用中,如交换机、路由器、流量管理、城域网传输设备和移动回程设备, 由于具备 MGIO (多G比特输入输出口),Nextreme-2 将成为 FPGAs 和 ASICs之外最佳的选择。Nextreme-2主要特征如下:

    Copyright © 2017-2020 微波EDA网 版权所有

    网站地图

    Top