如何使用最大似然检测器(MLD)方案优化MIMO接收器性能
时间:06-20
来源:互联网
点击:
作者:CEVA高级硬件系统架构师- Noam Dvoretzki,CEVA高级通信算法工程师- Zeev Kaplan
对于改进数据速率和/或信噪比,多输入和多输出(MIMO)是领先的方法之一。通过使用多个接收和发送天线,MIMO可利用无线信道的多样性。对于任何给定的信道带宽,这可用于提高信道的频谱效率并改进数据速率。
MIMO的规格取决于发送和接收天线的数量。在一个4×4 MIMO配置中,使用了四个发送天线和四个接收天线。这在同样信道带宽上实现了(在合适的条件下)高达四倍的数据传输。
一方面,简单的MIMO接收器基于线性接收器算法,其易于实现但无法完全利用MIMO的好处。另一方面,使用迭代法,可以实现最佳的最大后验概率近似MIMO算法;然而,这会导致高延时的不足。一种更加实用的非线性MIMO接收器的实施途径是最大似然(Maximum Likelihood, ML)或最大似然检测器(Maximum Likelihood Detector, MLD), 它在根本上是基于一个彻底的并列搜索。MLD在处理方面比传统线性接收器要求更高,但对于相同的信道条件,可提供明显更高的比特率。另外,对于具有天线相关性的信道,MLD更稳健可靠。
使用高阶MIMO规格(超过两个接收和两个发送天线)可以导致显著的频谱效率改进——但这也有其成本代价:随着MIMO规格的增加,MLD接收器的计算复杂性以指数方式增加。高阶MIMO要求相当大的处理能力——对于这一点,直接的MLD方法是不切实际的,必须使用次优(suboptimal)MLD算法来实现用户设备(User Equipment,UE)的实施。
次优ML接收器
次优ML接收器试图以更有效的方法来扫描可能的传送信号,从而减少整体复杂性并达到接近ML精度的结果。减少复杂性有助于根据大小和功率进行更加实际的硬件实施。这还使硬件能够保持由先进通信标准规定的高吞吐量。
次优ML方程式的解决可定义为一种树形搜索,其中树的每一个层级对应于一个发送符号。每个节点的分支突出数匹配QAM或发送符号的调制。一个4×4 MIMO配置可由一个四层树表示。假如调制为BPSK,每个节点将包含两个分支。
一旦定义了树的符号,可以部署树遍历算法,借用其它领域比如计算机科学。
关于此点,次优ML接收器可划分为两个主要类型:
1. 横向优先搜索
2. 深度优先搜索
横向优先搜索
横向优先的一个例子就是K-best算法。该解码器是一个固定复杂性解决方案,从树根开始并上行,直至它达到树的最后一层。在树的每层上,对所有选择的分支进行了评估并保留K留存节点,匹配最佳解决方案(代表了最接近接收信号的符号)——因此得名“K-best”。K剩余树叶然后就用于生成LLR结果。
该解码器的优点是:
* 单向流有助于硬件的简易流水线实施。
* 计算每层所需要的处理能力是恒定的,且直接与实施中所选的留存节点(K)的数量相关。
* 数据吞吐量是恒定的,其反过来简化了在系统中计划的数据流
该解码器的缺点包括:
* 需要大面积实施以便评估和分类所有选择的层级节点。
* 精度要求越高,所需要的K值越高。
* 在最佳SNR条件中,数据吞吐量不会增加。
* 不能保证达到ML解决方案,因为最佳解决方案可能存在于没有选择的节点中。
下述图表显示了一个采用QPSK调制的MIMO 4×4 (4-层)树。在此例子中,K为四。树的每层将分为十六个节点。最好的四个将会是用于下一层的留存节点。
深度优先搜索
深度优先的一个例子就是软输出球解码(Soft-Output Sphere Decoder)算法。此解码器是一种自适应复杂性解决方案,从树根开始并首先直接上升到树叶——因此得名“深度优先”。该树的优先解决方案确定了初始搜索半径或范围。从那时起,解码器在整个树层中追溯并上升。对树的每个超出搜索半径的节点及其下面的所有节点进行修整。每次找到一个更好的解决方案,相应地减少半径范围。以此方法,扫描并修整了符号树,直至有效选项数量减少。余下的符号代表了ML解决方案。
此解码器的优点是:
* 可保证获得ML解决方案,有助于结果精确度。
* 在高SNR条件下, 解码器运行更快,增加了数据吞吐量并降低了功耗。
* 相比同等的横向优先解决方案,可在更小区域内实施。
图3显示了具有自适应复杂性软输出球解码器与固定复杂性K-best解码器间的循环计数比较。因为SNR增加,球解码器将减少它的循环计数,而固定复杂性将保持不变,无论信道条件如何。
图3:固定对自适应复杂性。
该解码器的缺点包括:
* 解码器的非确定性表现使系统计划复杂化。
* 仅在当前分支完成后才知道下一个分支选择。这使得硬件传递途径的实施受到挑战。
图4显示了一个采用QPSK调制的MIMO 4×4 (4层)树例子。
1. 深度优先以下列方式选择到第一个树叶的符号路径:a. -3 (层1);b. -3 (层2);c. 1 (层 3);d. 3 (层 4)
2. 更新了初始半径
3. 追溯执行到第二层的一个符号
4. 在搜索期间,修整了超出搜索半径的分支(红色所示),因此使搜索树最小化。
图4:球解码树遍历。
对于改进数据速率和/或信噪比,多输入和多输出(MIMO)是领先的方法之一。通过使用多个接收和发送天线,MIMO可利用无线信道的多样性。对于任何给定的信道带宽,这可用于提高信道的频谱效率并改进数据速率。
MIMO的规格取决于发送和接收天线的数量。在一个4×4 MIMO配置中,使用了四个发送天线和四个接收天线。这在同样信道带宽上实现了(在合适的条件下)高达四倍的数据传输。
一方面,简单的MIMO接收器基于线性接收器算法,其易于实现但无法完全利用MIMO的好处。另一方面,使用迭代法,可以实现最佳的最大后验概率近似MIMO算法;然而,这会导致高延时的不足。一种更加实用的非线性MIMO接收器的实施途径是最大似然(Maximum Likelihood, ML)或最大似然检测器(Maximum Likelihood Detector, MLD), 它在根本上是基于一个彻底的并列搜索。MLD在处理方面比传统线性接收器要求更高,但对于相同的信道条件,可提供明显更高的比特率。另外,对于具有天线相关性的信道,MLD更稳健可靠。
使用高阶MIMO规格(超过两个接收和两个发送天线)可以导致显著的频谱效率改进——但这也有其成本代价:随着MIMO规格的增加,MLD接收器的计算复杂性以指数方式增加。高阶MIMO要求相当大的处理能力——对于这一点,直接的MLD方法是不切实际的,必须使用次优(suboptimal)MLD算法来实现用户设备(User Equipment,UE)的实施。
次优ML接收器
次优ML接收器试图以更有效的方法来扫描可能的传送信号,从而减少整体复杂性并达到接近ML精度的结果。减少复杂性有助于根据大小和功率进行更加实际的硬件实施。这还使硬件能够保持由先进通信标准规定的高吞吐量。
次优ML方程式的解决可定义为一种树形搜索,其中树的每一个层级对应于一个发送符号。每个节点的分支突出数匹配QAM或发送符号的调制。一个4×4 MIMO配置可由一个四层树表示。假如调制为BPSK,每个节点将包含两个分支。
一旦定义了树的符号,可以部署树遍历算法,借用其它领域比如计算机科学。
关于此点,次优ML接收器可划分为两个主要类型:
1. 横向优先搜索
2. 深度优先搜索
横向优先搜索
横向优先的一个例子就是K-best算法。该解码器是一个固定复杂性解决方案,从树根开始并上行,直至它达到树的最后一层。在树的每层上,对所有选择的分支进行了评估并保留K留存节点,匹配最佳解决方案(代表了最接近接收信号的符号)——因此得名“K-best”。K剩余树叶然后就用于生成LLR结果。
该解码器的优点是:
* 单向流有助于硬件的简易流水线实施。
* 计算每层所需要的处理能力是恒定的,且直接与实施中所选的留存节点(K)的数量相关。
* 数据吞吐量是恒定的,其反过来简化了在系统中计划的数据流
该解码器的缺点包括:
* 需要大面积实施以便评估和分类所有选择的层级节点。
* 精度要求越高,所需要的K值越高。
* 在最佳SNR条件中,数据吞吐量不会增加。
* 不能保证达到ML解决方案,因为最佳解决方案可能存在于没有选择的节点中。
下述图表显示了一个采用QPSK调制的MIMO 4×4 (4-层)树。在此例子中,K为四。树的每层将分为十六个节点。最好的四个将会是用于下一层的留存节点。
深度优先搜索
深度优先的一个例子就是软输出球解码(Soft-Output Sphere Decoder)算法。此解码器是一种自适应复杂性解决方案,从树根开始并首先直接上升到树叶——因此得名“深度优先”。该树的优先解决方案确定了初始搜索半径或范围。从那时起,解码器在整个树层中追溯并上升。对树的每个超出搜索半径的节点及其下面的所有节点进行修整。每次找到一个更好的解决方案,相应地减少半径范围。以此方法,扫描并修整了符号树,直至有效选项数量减少。余下的符号代表了ML解决方案。
此解码器的优点是:
* 可保证获得ML解决方案,有助于结果精确度。
* 在高SNR条件下, 解码器运行更快,增加了数据吞吐量并降低了功耗。
* 相比同等的横向优先解决方案,可在更小区域内实施。
图3显示了具有自适应复杂性软输出球解码器与固定复杂性K-best解码器间的循环计数比较。因为SNR增加,球解码器将减少它的循环计数,而固定复杂性将保持不变,无论信道条件如何。
图3:固定对自适应复杂性。
该解码器的缺点包括:
* 解码器的非确定性表现使系统计划复杂化。
* 仅在当前分支完成后才知道下一个分支选择。这使得硬件传递途径的实施受到挑战。
图4显示了一个采用QPSK调制的MIMO 4×4 (4层)树例子。
1. 深度优先以下列方式选择到第一个树叶的符号路径:a. -3 (层1);b. -3 (层2);c. 1 (层 3);d. 3 (层 4)
2. 更新了初始半径
3. 追溯执行到第二层的一个符号
4. 在搜索期间,修整了超出搜索半径的分支(红色所示),因此使搜索树最小化。
图4:球解码树遍历。
- CEVA授权许可奥迪康在具有突破性技术的助听器中 使用低功耗蓝牙技术(08-20)
- CEVA 授权许可HMicro在医疗保健和物联网设备中 使用CEVA Wi-Fi IP(10-01)
- 无线基带演进:4G调制解调器的多种设计方案(01-18)
- 如何解决智能电表的通信难题(04-29)
- Maxim推出业内首款投入批量生产的单芯片WiMAX? RF收发器(01-22)
- 声传感器网络节点的硬件系统设计(01-14)