射频技术原理及应用方案集锦
的"3D"芯片组组合,从而降低了整体的复杂性,摒弃了当今射频前端模块中常见的引线接合。集成功率放大器和天线 开关的封装作为基底层,管脚对所有频段配置都一致,包含滤波器和双工器的封装针对全球和/或多地区频段组合进行配置,置于PA/AS基底之上,就像在一个 通用基底上定制的"顶"。这一组合厚一毫米,在电路板上所占的面积只有美国高通公司前代射频前端解决方案的一半。重要的是,针对不同地区的定制终端无需更 改电路板布局,因为基础PA/ AS层可以保持不变(见图3)。
图3 射频POP 3D设计CMOS前端
这种设计基于可支持700MHz到2.7GHz的全球LTE频段以及传统2G/3G频段的架构,降低了"顶"部简化版本所需的本地RF频段定制。借助 RF POP方案,两三个PCB设计现在就可以实现此前的数十个或更多设计才能达到的全球支持,因为多频段配置可以使用相同的电路板布局。这为推动LTE生产规 模效益创造了可能性,效果正如四频之于GSM以及五频之于3G 。
相比之下,基于PCB模块的传统解决方案混合搭配不同技术,如基于 GaAs和基于CMOS的组件,成为单一终端运行环境下的最佳解决方案。要适应更广泛的环境则更为复杂,在某些情况下还会导致单一终端内存在多个并行解决 方案。取决于设计的频段组合,这些并行解决方案需要多个功率放大器、更多的独立芯片以及相关的引线结合,这会带来辐射干扰,增加了阻抗匹配需求,因而阻碍 了技术集成。如果需要更多频段,必须改变电路板(其中包括尺寸增加的可能性),并减少每一个独特设计的数量(见图4)。
图4 并行的传统射频前端独立设计
结论
美国高通公司的前端解决方案是一个创新集合体:首款采用集成天线开关的完全集成式单芯片多模、多频段CMOS的功率放大器首个堆栈式RF POP解决方案(3D封装),缩小了射频前端的空间,同时实现了通用电路板布局,并简化RF频段定制或扩展首个支持LTE的CMOS功率放大器首个采用包 络追踪的CMOS功率放大器首个动态重构LTE多模天线调谐器总体来说,它是第一款包括调制解调器和天线之间一切元件的、完全集成并基于CMOS的射频前 端该解决方案重点解决全球LTE频带扩展对移动终端的经济规模生产,以及极其有限的PCB空间所带来的直接挑战。RF POP方案实现了一个通用全球电路板级设计,它具有简化的射频频带扩展或定制,可以帮助恢复终端的设计和生产规模。更小的射频前端空间、散热空间需求和尺 寸,以及更长的电池寿命,成就了外形超薄、功能强大且高效的终端设计。此外,该解决方案现已开始出样,旨在满足实现LTE规模经济和全球漫游的紧迫挑战。
文章详情:深度解析高通RF360移动射频前端解决方案
相关文章:
1、基于RFID的手机防盗装置设计方案
2、基于STM32的LF RFID识别系统设计
3、基于RFID技术的无线传感器网络节点设计
4、射频芯片和射频前端参考设计架构
5、基于射频技术的穿戴式医疗仪器的设计
BGS8324 RF4CE Atmel 射频 高通 相关文章:
- TI_Zigbee_RF4CE射频遥控器解决方案(04-27)
- RF4CE的智能LED照明调控系统设计方案(03-02)
- RF4CE射频遥控器的软硬件设计介绍(05-31)
- RF4CE有何要求(03-18)
- WLAN 需要规划 掌握射频通信知识(01-03)
- 关于UART通信端口上射频干扰的研究(02-09)