射频技术原理及应用方案集锦
个串流可提供最高 866.7Mb/s的传输速率。
此外,为实现更高的数据吞吐量,2013年WiGig组织并入了WiFi联盟。WiGig致力于推广 IEEE 802.11ad标准,该标准采用60GHz频段,提供最高7Gb/s传输速率的短距离无线通信服务。由于60GHz信号无法穿透障碍物,当终端设备进入 WiGig信号无法覆盖的区域时,将自动切换到更低频段,但是传输速率将大幅下降。
表1总结了IEEE 802.11标准演进的历程,从中可以看出WLAN标准的每一次升级和补充,其结果无非就是为了得到传输速率/吞吐量。为了实现这一目标,可以采用以下两 种手段。1、采用更宽的信道带宽。为实现这一目的,有时就需要提高工作频段。因此,WLAN已经从最初的2.4GHz逐步向5GHz过渡,并且已经出现了 60GHz的标准,从而可以利用更宽的频谱资源。2、采用空间复用技术。从IEEE 802.11n开始,MIMO技术被引入WLAN,并且最大空间串流也在IEEE 802.11ac中得到增加。
表1:WLAN物理层标准演进
2010年以来,全球智能手机的 出货量稳步增长。如图1的预计所示,到2017年,全球智能手机每年的出货量将接近16亿部。在智能手机中,由于工艺的差异,手机主芯片通常不会集成 WLAN的射频电路。对于主芯片,WLAN的射频电路属于外围芯片,如图2所示。WLAN标准的不断提升要求WLAN射频电路除了要支持5GHz的 IEEE 802.11ac的需求,也要对IEEE 802.11a/b/g/n作向下兼容支持,此外,还要兼顾到与2.4GHz WLAN标准同频的蓝牙(BT)的共存。
图1:全球智能手机出货量统计
图2:智能手机内部架构
为满足对智能手机WLAN连接标准不断提升的需求,恩智浦半导体即将推出两款集成开关的低噪声放大器芯片(LNA+SW)BGS8324(图3)和BGS8358(图4)。
图3:BGS8324 2.4GHz (IEEE 802.11b/g/n)前端芯片架构
图4:BGS8358 5GHz (IEEE 802.11a/n/ac) 前端芯片架构
BGS8324是工作在2.4GHz频段的WLAN接收前端芯片,支持IEEE 802.11b/g以及IEEE 802.11n的2.4GHz频段,同时兼顾蓝牙的共存。该产品采用2mm&TImes;2mm的QFN封装,无需外部匹配器件,具有体积小、功耗低、设计简单等特 点。该芯片支持2.7V到6V的电压,具有接收放大、直通、发射和蓝牙四种模式,并内置对5.8GHz共存信号的防阻塞功能。
BGS8358是工作在5GHz频段的WLAN接收前端芯片,支持IEEE 802.11a/ac以及IEEE 802.11n的5GHz频段。该芯片采用1.5mm&TImes;1.5mm的QFN封装,同样不需要外部匹配器件,具有体积小、功耗低、设计简单等特点。该芯片支 持2.7V到6V的电压,具有接收放大、直通和发射三种模式,并内置对2.4GHz共存信号的防阻塞功能。
本文回顾了WLAN的物理 层标准IEEE 802.11的演进历程,分析了该标准历次修正通过工作带宽的增加以及MIMO技术的运用使得数据吞吐量大幅提高的趋势。考虑到WLAN在智能手机中的广 泛应用,为迎合最新的WLAN标准,恩智浦半导体推出了用于智能手机WLAN射频方案的BGS8324和BGS8358两款产品,以兼容IEEE 802.11a/b/g/n/ac各种标准,同时,还兼顾到2.4GHz频段蓝牙的共存。这两款产品具有体积小、功耗低、设计简单等优点,具有广阔的市场 前景。
射频识别技术在门禁系统中的应用
射频识别(RFID,即Radio Frequency IdenTIfication)技术是自动识别技术在无线电技术方面的具体应用与发展,其基本原理是利用射频方式进行非接触双向通信,以达到识别与数据交 换的目的?因此它可实现多目标识别、运动目标识别和远程实时监控及管理.通信距离可从几厘米到几十米,其最主要的优点是环境适应性强,受雨雪、冰雹、灰尘 等影响小,可全天候工作,非接触地完成自动识别、跟踪与管理,并且可穿透非金属物体进行识别,抗干扰能力强。
随着生活水平的不 断提高,汽车开始大量进入家庭.在中国城市汽车的保有量迅速增加情况下,车辆的管理已成为一个难题.对车辆进行有效的管理,其核心问题是如何对车辆进行识 别.本文介绍了一个基于射频识别技术的门禁系统,将RFID技术应用于门禁的管理,可以有效地实现对车辆快速可靠地识别,使安防中门禁管理实现高效化、智 能化.
1 系统硬件构成
射频门禁系统由车载电子标签、车感线圈、射频接口、信号处理、控制系统与管理系统六个部分组成.系统框图如图1所示.
图1 射频门禁系统组成结构方框图
1.1 电子标签
电子标签,通常也被称为应答器.它内部存储车辆及车主的基本信息,安装在车辆上,为无源标签.当电子标签进入阅读器的微波查询信号覆盖区域时,电子标签通过感应电流所获得的
BGS8324 RF4CE Atmel 射频 高通 相关文章:
- TI_Zigbee_RF4CE射频遥控器解决方案(04-27)
- RF4CE的智能LED照明调控系统设计方案(03-02)
- RF4CE射频遥控器的软硬件设计介绍(05-31)
- RF4CE有何要求(03-18)
- WLAN 需要规划 掌握射频通信知识(01-03)
- 关于UART通信端口上射频干扰的研究(02-09)