射频技术原理及应用方案集锦
处理器、IEEE 802.15.4 RF 收发器、大容量存储器和丰富的接口部件,通过加载ZigBee 和RF4CE 协议栈,可方便地实现基于两种协议的典型应用。CC2530 仅需少量外围元件,其中,天线部分对无线通信性能的影响较大,故元件选择和PCB 制版需严格遵守手册中的注意事项。
图4 所示为调光器主控电路的硬件原理图。为产生独立的3 路高频PWM,采用了单时钟周期的增强型51 内核单片机STC12C5410AD,同样晶振条件下的工作速度比普通51 单片机快8~12倍。STC12C5410AD与CC2530 模块也采用串行连接。
3 路PWM 输出分别接到R、G、B 3 个LED 驱动器的PWM调光输入端。AT24C64 为8 KB 串行EEPROM 存储器,通过SCL、SDA与单片机的虚拟I2C接口相连,用于存储场景配方表。
表1 所列是场景配方表的存储结构。每张表包括起始和结尾标志,逻辑上以每种PWM 组合所持续的时间(单位:s)为基本记录。
图5 所示为LED 驱动电路的硬件结构。图5 中,LT3756为新型大功率LED 驱动芯片,输入电压6~100 V,通过一个外部N沟道MOSFET,可以使用标称值为12 V 的输入驱动20 个1 A 的白光LED,效率超过94%,频率范围为100 kHz~1MHz.
图 5 LED驱动电路
LT3756 采用True Color PWM调光技术,调光范围可达3 000:1.
3 软件流程
系统遥控器的主控程序流程如图6 所示。无线遥控系统本质上只是将接收机本机输入装置以无线方式加以延伸,故其遥控器程序的主要任务是检测按键和发送键值。采用休眠-中断机制可实现单片机的低平均功耗。
RF4CE 与红外遥控相比,一个很重要的优点是双向通信,遥控器发出键值后,可根据是否有正确的回应信息,控制状态指示灯的亮灭和闪烁,从而提醒用户进行正确的操作。
本文了提出了一套LED智能照明系统的设计方案,本方案中所设计的智能照明系统将最新射频遥控技术RF4CE 用于LED 照明控制,从而克服了现有DALI、C-Bus 等照明控制系统在开放性、可靠性、安全性、互操作性、设备及运行成本等方面存在的不足。经实测,本LED照明调控系统可实现所要求的各项功能,遥控距离不 小于30 m( 开阔地), 遥控器平均电流小于10μA,能以较高的性价比实现LED 照明系统的智能调控,同时提高电能利用效率。
WLAN射频优化的解决方案设计详解
本文回顾了WLAN标准IEEE 802.11的发展历程,对其发展趋势做出了判断。结合到WLAN在智能手机中的具体应用对射频单元提出的新的要求,恩智浦半导体公司(NXP)将提供新的射频解决方案,完全满足WLAN最新标准对射频电路的要求。2010年以来,智能手机市场稳步增长。而智能手机一般都提供了无线局域网(WLAN)的连 接,这为WLAN射频单元提供了广阔的市场前景。WLAN的标准自1997年发布以来,为了提升传输速率和吞吐量,对物理层协议进行了补充,对射频单元的 工作频率、性能和复杂度都有新的要求。
WLAN的历史和发展趋势
无线局域网(WLAN)是基于IEEE 802.11标准、使用免费的ISM频段射频资源实现的局域网络连接。IEEE 802.11的第一个版本的标准由IEEE在1997年制定,该标准定义了媒体访问控制层和物理层。其中,物理层定义了工作频率为2.4GHz的ISM频 段,总数据传输速率为2Mb/s。
1999年,IEEE 802.11增加了两个补充版本IEEE 802.11a和IEEE 802.11b,其中IEEE 802.11a定义了5GHz上的ISM频段,数据传输速率可达54Mb/s;而IEEE 802.11b则仍工作在2.4GHz的ISM频段,但传输速率可达11Mb/s。2003年,IEEE为WLAN的物理层作补充,发布了IEEE 802.11g。该版本仍采用2.4GHz频段,但传输速率提高到54Mb/s。2009年,IEEE再次对物理层补充,推出了IEEE 802.11n。该标准支持2.4GHz和5GHz两个频段,同时可采用双倍带宽40MHz,支持多入多出(MIMO)技术。理论上,其最高的传输速率可 达600Mb/s(达到该速率要同时满足64QAM调制、5/6编码速率、40MHz信道带宽、400ns的保护间隔、采用4个空间串流,以及每个串流速 率为150Mb/s)。
2014 年1月,作为IEEE 802.11n的升级,新版本IEEE 802.11ac获得通过,该版本采用5GHz频段,可提供更高吞吐量(指成功接收数据的速率)的WLAN服务。IEEE 802.11ac具有更宽的射频带宽(相对于IEEE 802.11n的40MHz带宽,IEEE 802.11ac提供至少80MHz、最高160MHz的带宽),具有更多的MIMO空间串流(最多8路),并支持下行多用户多入多出(MU- MIMO),以及更高级的256-QAM数字调制。因此,IEEE 802.11ac具有更高的数据传输速率,在256QAM调制、5/6编码速率、160MHz带宽、400ns保护间隔的情况下,每
BGS8324 RF4CE Atmel 射频 高通 相关文章:
- TI_Zigbee_RF4CE射频遥控器解决方案(04-27)
- RF4CE的智能LED照明调控系统设计方案(03-02)
- RF4CE射频遥控器的软硬件设计介绍(05-31)
- RF4CE有何要求(03-18)
- WLAN 需要规划 掌握射频通信知识(01-03)
- 关于UART通信端口上射频干扰的研究(02-09)