怎样选择最优的 Buck 转换器拓扑?
点之间的死区时间延长,都会使得有效的导通时间增加并导致开关频率出现明显的下降。
一种降低这些效应的方法是测量实际的开关工作频率并将其和预定的数据进行比较以确定频率调整的方向,其好处是无需测量实际的输出电压,因而省去了一个用于测量输出电压的引线端子。ACOTTM正是采用这种测量实际的开关频率并在反馈回路中调整导通时间的方法来将平均开关工作频率保持在一个预定的范围之内。
为了能和低ESR的陶瓷电容配合起来稳定工作,ACOTTM在IC内部使用了一个虚拟的电感电流脉动信号,它代替了通常使用的借助输出电容的ESR生成的电感电流信号,这个信号和其它内部补偿举措相结合优化了和低ESR陶瓷电容配合时的工作表现,达成了稳定工作的目的。
ACOTTM单稳态电路的运作
ACOTTM的控制逻辑是非常简单易懂的,反馈电压和虚拟电感电流脉动信号相加以后与参考电压进行比较,当前者的幅度低于后者时,一次单稳态导通过程即被触发(触发信号在经过一个与最短截止时间相等的时间以后即被自动复位),上桥开关打开,输入电压进入开关节点加到电感上,电感电流即线性增加;经过预设的固定导通时间以后,上桥关闭,续流开关打开,电感电流从最高点开始线性降低,与此同时,一个最短截止时间单稳态过程被触发以防止另一次导通过程在开关噪声持续期间立即发生,并使反馈电压和电流感应信号可以被正确地获取。最短截止时间被保持在极短的状态,其典型值为230ns,这样可以保证另一次导通过程可以在需要时被及时启动,以便满足负载的需要。
这段文字已经说明了 ACOTTM Buck 转换器的特性:极快的瞬态响应速度;可以使用低ESR的MLCC作为输出电容;平均工作频率是稳定的。请注意它不使用电流检测电路和误差放大器,取而代之的是直接将检测到的输出电压和虚拟的电感电流脉动信号的和与参考电压进行比较以决定何时需要唤醒一次导通过程。下面的图形是ACOTTM架构在稳定状态和负载变化情况下的工作波形示意:
图八、ACOTTM架构Buck转换器的工作波形
从中可以看出,当负载变化的时候,与电流模式在工作频率固定的情况下通过改变占空比来调节输出电压不一样的是它改变了工作的频率,导通脉冲的急剧增加可使它快速地满足负载的需要,从而快速将输出电压拉回到稳定状态。
我们同样选择一款最高工作电压为5.5V的ACOTTM架构低压Buck转换器来测试它的性能,先来看看电路图:
图九、ACOTTM架构Buck转换器的电路实例
这一次选择的是RT5784A,它是ACOTTM架构的,平均工作频率也是1.5MHz(请注意是平均工作频率,这是与电流模式不一样的地方),它的负载能力是2A,与我们选用的电流模式器件RT8059的负载能力不一样,但这并不影响我们的测试,因为负载电流是由负载的大小决定的,与负载能力是两回事。输出电压仍然设定为相同的1.2V,我们让负载电流在0.5A到1A之间跳变,下图是测量到的电流波形和输出电压变化的波形:
图十、ACOTTM架构Buck转换器的电路实例瞬态响应波形
当负载电流发生跳变的时候,输出电压的下跌只有24mV,远小于电流模式器件在同样条件下出现的66mV的变化。当然了,它的回复稳定状态的时间也是很短的,下图显示了这个过程:
图十一、ACOTTM架构Buck转换器的电路实例瞬态响应波形细节展开
不到一个微秒,电感电流就已经追上了负载电流的变化,前述的电流模式器件没有这么快。
---------------------------
更多电源技术热文可关注电子发烧友网最新出炉的2月份《电源技术特刊》
ACOTTM已经采取了频率锁定电路来解决它在工作条件变化情况下的工作频率变化问题,它的平均频率是稳定的,但这仍然不能让它的频率是固定不变的,也不能使用外部时钟来对它的动作进行同步,如果你有相关的需要,你还是需要考虑使用电流模式的器件。
四、 电流模式固定导通时间(Current-Mode Constant-On-Time, CMCOT)
对于某些应用来说,电流模式比较慢的瞬态响应能力是不能接受的,也不能接受电流模式不能太低的占空比,它们对于ACOTTM架构在面对负载快速变化时的工作频率的大范围变化也不能接受,这时候就可以选择一个折中的方案:电流模式固定导通时间架构(CMCOT)。
CMCOT的电路拓扑是这样的:
图十二:CMCOT架构Buck转换器的电路拓扑
CMCOT Buck转换器的功率开关拥有固定的导通时间,并通过对功率开关关断时间的控制实现输出电压的调整。这种架构中包含了误差放大器和电流检测电路,但对关断时间的控制依据是来源于电感谷值电流的检
MOSFET功率开关 占空比 Buck转换器 相关文章:
- 50%以上占空比降压转换器下坡 (Downslope) 补偿(07-07)
- 数字电源UCD92xx输出电压波形的优化(06-18)
- 概述串联式开关电源的工作原理(09-15)
- 基于微处理器和PWM的交流可调稳压电源(06-14)
- 同步降压MOSFET电阻比的正确选择(06-20)
- 基于80C196的脉冲信号采集卡的设计(10-17)