深入浅出学人工智能神经网络:GAN原理与应用入门介绍
例:
用于训练 GAN 的数据集:
-
Caltech-UCSD-200-2011 是一个具有 200 种鸟类照片、总数为 11,788 的图像数据集。
-
Oxford-102 花数据集由 102 个花的类别组成,每个类别包含 40 到 258 张图片不等。
药物匹配
当其它研究员应用 GAN 处理图片和视频时,Insilico Medicine 的研究人员提出了一种运用 GAN 进行药物匹配的方法。
我们的目标是训练生成器,以尽可能精确地从一个药物数据库中对现有药物进行按病取药的操作。
经过训练后,可以使用生成器获得一种以前不可治愈的疾病的药方,并使用判别器确定生成的药方是否治愈了特定疾病。
肿瘤分子生物学的应用
Insilico Medicine 另一个研究表明,产生一组按参数定义的新抗癌分子的管道。其目的是预测具有抗癌作用的药物反应和化合物。
研究人员提出了一个基于现有生化数据的用于识别和生成新化合物的对抗自编码器(AAE)模型。
「据我们所知,这是 GAN 技术在挖掘癌症药物领域的首个应用。」- 研究人员说。
数据库中有许多可用的生物化学数据,如癌细胞系百科全书(CCLE)、肿瘤药物敏感基因学(GDSC)和 NCI-60 癌细胞系。所有这些都包含针对癌症的不同药物实验的筛选数据。
对抗自编码器以药物浓度和指纹作为输入并使用生长抑制率数据进行训练(GI,显示治疗后癌细胞的数量减少情况)。
分子指纹在计算机中有一个固定的位数表示,每一位代表某些特征的保留状态。
隐藏层由 5 个神经元组成,其中一个负责 GI(癌细胞抑制率),另外 4 个由正态分布判别。因此,一个回归项被添加到编码器代价函数中。此外,编码器只能将相同的指纹映射到相同的潜在向量,这一过程独立于通过额外的流形代价集中输入。
经过训练,网络可以从期望的分布中生成分子,并使用 GI 神经元作为输出化合物的微调器。
这项工作的成果如下:已训练 AAE 模型预测得到的化合物已被证明是抗癌药物,和需接受抗癌活性化合物实验验证的新药物。
「我们的研究结果表明,本文提出的 AAE 模型使用深度生成模型显著提高了特定抗癌能力和新分子的开发效率。」
结论
无监督学习是人工智能的下一个蓝海,我们正朝着这一方向迈进。
生成对抗网络可以应用于许多领域,从生成图像到预测药物,所以不要害怕失败。我们相信 GAN 有助于建立一个更好的机器学习的未来。
原文链接:https://blog.statsbot.co/generative-adversarial-networks-gans-engine-and-applications-f96291965b47
本文为机器之心编译,转载请联系本公众号获得授权。
?------------------------------------------------
- 用ARM和FPGA搭建神经网络处理器通信方案(07-19)
- 机器学习算法盘点:人工神经网络、深度学习(07-02)
- 基于模糊神经网络的机器人位置控制系统设计(08-18)
- 基于模糊行为和神经网络的机器人视觉伺服控制方案(08-19)
- 分析机器人避障技术:从传感器到算法原理(10-25)
- 人工智能全新突破:神经网络可自主识别图片中的对象(11-09)