漫谈游戏的深度学习算法,从FPS和RTS角度分析
时间:09-19
来源:
点击:
创造新型电子游戏
H. 终身适应性
I. 与人类相似的玩游戏方式
J. 性能水平可调整的智能体
K. 游戏的学习模型
L. 处理大型决策空间
结论
本论文对应用到电子游戏中的深度学习方法进行了综述,涉及到的电子游戏类型包括:街机游戏、竞速游戏、第一人称射击游戏、开放世界游戏、即时战略游戏、物理游戏和基于文本的游戏。涉及到的多数工作研究端到端无模型深度强化学习,其中卷积神经网络能够通过游戏互动从原始像素中直接学习玩游戏。一些研究还展示了使用监督学习从游戏日志中学习,让智能体自己在游戏环境中展开互动的模型。对于一些简单的游戏,如很多街机游戏,本文谈及的很多方法的表现已经超过人类水平,而复杂度更高的游戏还面临很多开放性挑战。
- 机器学习算法盘点:人工神经网络、深度学习(07-02)
- 2016年人工智能与深度学习领域的十大收购(07-26)
- AI/机器学习/深度学习三者的区别是什么?(09-10)
- 深度学习的硬件架构解析(10-18)
- 麻省理工科技评论评选的14大医疗领域突破科技(上)(10-14)
- 探秘机器人是如何进行深度学习的(09-18)