微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 带电源负载的控制系统电路设计攻略

带电源负载的控制系统电路设计攻略

时间:02-04 来源:互联网 点击:

Rs下面的端子连接模拟地(电阻监视部分的地)。图3中的新变量被定义为:

  假设增益级电路是理想的情况下,图4和图5分别画出了作为δ函数的比较器输入电压(Uu1, Ui1, Uu2, Ui2, Ud1 和Ud2)。在图4中,实线是U=15V时的结果,虚线是U=10V时的结果。Rp值保持不变。从图中可以看出,阈值点(δi和δs)不受U变化的影响。

  

  图4 a)

  

  作图4 b)

  在图5中,实线是Rp=10mΩ时的结果,虚线是Rp=200mΩ时的结果。在这两种情况下,U保持不变(U=15V)。从中可以看出,δi 和δs不受Rp变化的影响。

  

  图5 a)

  

  图5 b)

  虽然U和Rp的变化不影响δi 和δs,但它们影响比较器的单端和差分输入电压,见图4和图5。因此模型增益的确定应慎重,要确保满足比较器的共模输入电压范围(CMIVR)要求。在这个例子中,假设比较器能够实现接近地电位的检测,也就是说它们的共模输入电压范围可以从0(或以下)扩展到某个正值。在图4 a)和图5 a)中可以看到,在低于和高于δi 与δs时,相关的输入电压(对δi来说是Uu1和Ui1,对δs来说是Uu2和Ui2)呈现相反的趋势。因此,相关输入电压在δi和δs处同时具有最高值,分别是Ut1和Ut2。要想比较器在δi 和δs点提供正确的输出状态,Ut1和Ut2必须在它们的共模输入电压范围之内(CMIVR)。如果是这样,相关输入电压可能在低于和高于δi 和δs时超出CMIVR,因为每个比较器至少有一个输入电压在CMIVR内是有保证的,而且大多数比较器在这种情况下仍能提供正确的输出状态。符合工业标准的LM393($0.0737)就是具有这种能力的一个典型例子。从图4 a)和图5 a)中可以看出,Ut1和Ut2不是固定的,它们会随着U增加和/或Rp减小而增大。

  当U位于其最大可能值、Rp位于其最小可能值(在大多数情况下可以认为是0)时,将形成在比较器CMIVR方面最差的工作条件。在计算模型增益时应该将这些U和Rp值代入公式(2)、(3)、(4)和(5)。比较器的输入偏移电压(IOV)有可能导致δi 和δs阈值点偏离期望值,并降低电阻监视的精度。为了尽可能减小这种漂移幅度,我们应该尽可能增加分别对应δi 和δs的Ud1和Ud2斜率模(绝对值),如图4 b)和图5 b)所示。另外观察图4 a)和图5 a)可以看出,通过增加Ut1和Ut2也可以减小这种漂移。考虑到前面讨论的共模输入电压范围(CMIVR)限制,我们可以得出结论:应选择接近 CMIVR上限的Ut1和Ut2电压值,并留一些安全余量应对实际元件的容差和漂移。选好Ut1和Ut2后,就可以将它们与T、Rn、Rs、U (最大值) 和Rp (最小值)一起代入增益公式((2), (3), (4), (5))计算模型增益,完成模型的调整。

  相反,当Ud1和Ud2斜率模减小时,由于输入偏移电压(IOV)引起的阈值点漂移将变得更糟,见图4 b)和图5 b)。从这些图还可以看出,这些模值随U的减小和/或Rp的增加而减小。因此最差精度损失发生在最低期望的U值和最高期望的Rp值时。总之,由IOV引起的精度损失行为可以被总结为:针对某个特定的比较器IOV范围,为了满足特定的精度要求,必须重视相应的最小U值和最大Rp值。也可能在一些特殊情况下,U=0和/或Rp → (+∞)。符合这些情况的例子包括U供电电源的关断或故障、保险丝熔断、PWM应用中功率开关的开路等。在发生这些事件时,所有比较器的输入电压将接近于 0,输出信号(Fault)将没有统一的状态。此时Fault应被忽略,或被某些额外的检验电路关闭。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top