智能家电电子电路设计图集锦
TOP1 智能家电远程控制系统电路设计
智能家电是将计算机通信网络技术与数字技术,以简单精巧的形式融入到传统家电中,使家电具备智能化和信息网络功能。智能家电的产生和发展将对传统家电、计算机和通信业产生深远影响。目前智能家电的实现方案众多,采用专用集成电路是方案 。文中介绍的电话远程智能家电控制系统以标准程控交换信令作为系统控制命令,以公用电话交换网作为传输介质,用户可以在远端发送DTMF 双音多频信号,实现对家用电器等设备的远程控制。本系统抛弃了一些复杂的,兼容性差的芯片,取而代之的是得到广泛应用并且控制简单的DTMF 双音频解码芯片和单片机,识别率高,并且技术成熟,使得本系统可以在复杂环境下稳定工作。
智能家电应具有很多功能,文中仅讨论远程控制系统的设计。图1 为系统功能框图,由单片机,DTMF 双音频解码模块、家电控制驱动接口、振铃检测与上线P离线开关等几个部分组成。系统检测到远程电话线传输过来的信号后,由双音频解码器对远程电话的 DTMF(Dual Tone Multi($198.7500) Frequency) 进行解码识别,并对相应的受控电器发出相应的动作指令。
双音多频信号解码电路
DTMF 双音多频信号解码电路是目前在按键电话(固定电话、移动电话) 、程控交换机及无线通信设备中广泛应用的集成电路。双音多频信号是一组由高频信号与低频信号叠加而成的组合信号,我国国家标准规定了电话键盘按键与双音多频信号的对应关系。本系统采用HT9170作为DTMF 信号的解码核心器件,如图2 所示。
振铃检测与上线P离线开关
电话被呼叫时,交换机发来振铃信号。振铃为连续的正弦波,电压有效值50V ±12 V ,振铃周期约为5 秒。为避免用户呼叫系统时产生的高压振铃信号对DTMF 信号解码电路产生危害,在系统待机及振铃时,DTMF 信号解码电路应处于离线状态(与用户电话线断开) 。只有在系统检测到振铃并自动摘机后,DTMF 信号解码电路才处于上线状态(与用户电话线接通) 。根据振铃信号电压的特点,可以先使用二极管和滤波电路对振铃进行整流滤波,所得信号经稳压二极管稳压至5V 后加在开关三极管的基极,使对应有振铃信号的时间内输出高电平,如图3 所示。再将此信号输出至单片机的中断计数器输入口,当计数至7 次后(一般电话来电振铃为8 次) 由单片机控制接通继电器完成自动摘机,并闭合系统上线P离线开关电路,开启DTMF 信号解码电路与电话用户线的连接。
驱动电路
家电远程控制系统通过对继电器的闭合实现对受控电器的控制。因此,在单片机与受控电器之间必须设置一个驱动接口电路。本系统采用美国 TexasInstruments 和Sprague 公司开发的ULN2003A($0.1500) 芯片,来关闭与开启继电器开关,如图4 所示。
本文提出了通过远程电话实现智能家电控制系统的一种实现方案。介绍了家电和电话之间的控制接口电路, 讨论了系统结构及硬件设计。利用本系统可以实现固定电话对空调器、电灯、电饭锅等家用电器设备的远程控制。另外,本系统也可应用于工农业中,实现对无人值守岗位的远程控制。系统抛弃了一些复杂的,兼容性差的芯片,取而代之的是得到广泛应用并且控制简单的DTMF 双音频解码芯片和单片机,识别率高,并且技术成熟,使得系统可以在复杂环境下稳定工作。此外,可以通过进一步的高级菜单设计与驱动电路设计来完善控制单元,增加控制家电的运作时间、风速等级等复杂操作,使远程家电控制方式更加智能化。
----------------------------------------
智能家电技术资料集锦——让家电设计迈入崭新时代!
TOP2 WiFi构成的智能家电电路设计须知
智能家电是利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成,构建高效的家庭日程事务的管理系统,提升安全性、便利性、舒适性、艺术性,并实现环保节能环境。最常实现的应用是灯光、热水器、空调、入侵监测、烟雾报警、视频监控和窗帘的智能控制。
WiFi 技术在智能家居中的应用的主要优点有:WiFi 智能节点可以直接连接无线路由器,从而接入Internet($68.6000) 网;不需要家庭网关,节点可以任意扩充;不会破坏现有装修;智能手机可以进行局域网控制和远程控制。当然,WiFi 技术相比ZigBee 和433 MHz 射频通信技术也有其缺点:功耗偏大、价格偏高。但随着节能技术的引进和芯片工艺的改进,功耗问题和价格问题已逐步得到解决。鉴于WiFi 模块是笔记本、平板电脑和
- 盘点:那些为健康而生的APP与智能硬件(11-24)
- 指尖的密码!手指静脉识别鼠标问世(02-02)
- WLAN射频优化的解决方案设计详解(03-03)
- 智能鞋垫:解决跑步者的膝伤问题(02-12)
- 混合动力汽车系统结构大盘点TOP3(03-14)
- 盘点STM32-NUCLEO开发与仿真平台(03-28)