微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 如何成为硬件高手

如何成为硬件高手

时间:03-20 来源:ZLG致远电子 点击:

,感应电动势U=Ldi/dt,又有另外的形式U=Ndφ/dt,这两者有什么联系,结合安培环路定理推导你会找出电感量与线圈匝数、磁导率和磁路截面S和磁路长度l的关系L=μN2S/l。根据电感的定义L=Ψ/i=Nφ/i同样得到L=μN2S/l,殊途同路。SI单位制中有7个基本单位,当前科学技术中如此之多的物理量单位由其导出,你说各种知识之间有没有密切的联系?

通电导线内平均电场有多大呢,不妨推导一下,其结果为电流密度和电阻率乘积。

众所周知电传播速度非载流子的移动速度。那么实际导体中电子平均速度是多少呢?设铜导线截面积为1mm2,电流为1A,根据铜相对原子质量和密度,可得摩尔密度为1.4&TImes;105mol/m3,1mol数量为阿伏伽德罗常数,设铜原子最外层为1个电子脱离束缚,则自由电子密度为8.4&TImes;1028/m3,根据电流定义I=Q/t=vtSpq/t得到速度v=I/(Spq)=1/(1&TImes;10-6&TImes;8.4×1028×1.6×10-19)≈74μm/s,这只是大概值。导体既然有电场为何电子不是加速呢,实际电子运动会经历加速、与原子碰撞等,碰撞、束缚宏观为阻力,与宏观电场力相等,电场力克服阻力做功使导体发热,此为电阻。

大胆假设,然后证明。摩擦带电的塑料可以吸引纸屑,220V带电导线为何不会吸引纸屑?其实前者指带电荷,后者指通有电流是电中性的。不过用一个绝缘棒连接的金属球碰触一个对大地为100V的电压,实际上吸引不了纸屑,但也是带了电荷的。球体半径R,根据电场高斯定理、电压、电容定义得孤立导体球电容C=4πε0R。兵乓球大的金属球电容为2.2pF,连接到100V电压上充电电量为220pC,当然脱离电源后球体电势只有100V。当充进1.5μC电量时(相当于人体带10kV静电的电量,冬天很平常)电势有682kV,表面电场是很高的。能否吸引纸屑还没试过,充这么高电压需要起电机。曾经有一个静电发电机的想法,一个固定,一个可动极板构成电容,可动极板靠近固定极板时,电源对极板充进电荷,然后可动极板由机械能带动远离固定极板并脱离电源,克服极板间电场力所做的功使极板间电压增大(电容减少了),到达顶端连接到输出电容对其充电,然后返回充电,周而复此,这样输入输出的平均电流相同但电压变高了,驱动极板运动的机械能转化为电能。

别人的经验,千万别不假思索拿来即用。比如驱动继电器,很多书上都说线圈要并联一个二极管吸收反电动势。然而这不是任何时候都合适的,二极管正向导通时压降低等效电阻小,时间常数为L/R,电流衰减缓慢,导致触点断开时间延后,吸力不足的时间区间变大,断开不够干脆。有些情况就需要并联电阻或二极管串联稳压管提高吸收电压,使电流迅速衰减。

关于仿真

暂且将知识分为原理和技巧,利用工具是一种技巧,但应以原理为基础。刚开始学习和工作,建议尽量手算,减少对工具的依赖,对成长也有好处。下面有一个电路,两个四线电阻并联,求输出电压和输入电流的关系,以及每部分电阻变化对输出的影响,光是前者计算就可以写满几页纸,这也需要毅力。

要做好产品,需要长久的学习积累,并不轻松。如当决心从事研发,那就坚定不移地走下去吧。化身为史波克,驾驶着进取号电子飞船,踏上探索未知世界的征程。在发射区,偏置已使耗尽层变窄,你与大量小伙伴受电场力驱动轻松地涌进了基区,这是一个充满黑洞的时空,一些同伴被黑洞所束缚,一些被掳去另一世界,还好困难总是短暂的(基区很薄),你幸运地躲过一劫,未及看清便和大部分同伴飞到了集电结,突然受到一股强大吸力牵引,快速渡越了空旷的集电区,漫游在低阻导线上,总算松了一口气。然而前路不如你所愿地一帆风顺,阻力重重的负载中,到处碰壁,撞得浑身通红。甚至你的飞船被原子掠去为它运转,好不容易偷得一艘飞船利用热动力逃离魔鬼的掌控,曲折中前行,历经艰难险阻才到达胜利彼岸,人生犹如一场电子的旅行!

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top