微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 静态时序分析基础与应用连载(1)

静态时序分析基础与应用连载(1)

时间:02-11 来源:网络整理 点击:

tency定义从Clock来源到序向元件Clock输入端的延迟时间。Uncertainty则定义Clock讯号到序向元件Clock输入端可能早到或晚到的时间。

如果上面的文字让你有不知所云的感觉,那底下看图说故事的解说也许会让你有比较清晰的概念。在图十五的电路中,左边的正反器(Flip-Flop)在第一个Clock上升缘时会丢出资料,此资料会在第二个Clock上升缘让右边的Flip-Flop撷取。要分析右边的Flip-Flop能否正确撷取资料就必须知道第一个Clock上升缘到达节点C1的时间点和第二个上升缘到达节点C2的时间点。假设在时间点为0的时候,Clock讯号由S点出发,经过一段时间(source latency,1个时间单位,模拟晶片外的Clock延迟时间,例如板子上的绕线产生的讯号延迟时间)到达电路的Clock输入端点P,接下来再经过一段时间(晶片内Clock绕线造成的讯号延迟时间),Clock讯号分别到达C1和C2节点。如果电路已经进行布局与绕线,输入端点P到C1和C2的讯号延迟时间可由连线上的寄生电阻电容计算得来。比方说,经过计算发现讯号由P传递到C1需要1个时间单位,由P传递到C2需2个时间单位,则Clock讯号第一个上升缘到达C1和第二个上升缘到达C2的时间点就会如图十六下方两列所示,分别为时间点2和13(因为加上了1个时间单位的source latency)。

在布局与绕线之前,我们无法准确得知P到C1和C2的讯号延迟时间,仅能先做个预估。图十五的network latency及上文提到的Uncertainty就是用来做此种预估的。先假设我们拥有某种完美的布局与绕线软体可以让Clock输入端点P到所有 Flip-Flop的Clock输入端的讯号延迟时间一模一样,那么我们只要知道这个讯号延迟时间就可以得到Clock讯号到达C1和C2的时间点了。这个讯号延迟时间可以藉由电路特性(如预估面积大小,Flip-Flop数目等)来做预估,而这个预估值就是所谓的network latency。如果这种完美的软体存在的话,那Clock的上升缘到达C1和C2的时间点就可以由Latency(source latency + network latency)计算出来。

很不幸的,世界上没有这么完美的软体,在布局与绕线后Clock输入端点P到所有Flip-Flop的Clock输入端的讯号延迟时间不会完全一样。也就是说Clock的某个上升缘不会同时到达C1和C2。因此我们要对上述的预估值做些修正,加入Uncertainty的描述来定义Clock上升缘左右移动的可能范围。在图十六中,Uncertainty为1个时间单位,所以Clock第一个上升缘会在时间点3(因为 Latency为3)左右1时间单位范围内(也就是时间点2到时间点4)到达C1,。第二个上升缘则会在时间点12到14的范围内到达C2。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top