将Pico投影集成到紧凑型工业应用的设计考量
这三者之间的关系。
(3)
从公式3可衍生出公式4。
(4)
公式4显示,S等于"P乘以一个比例因数",其中比例因数取决于P/K比。图2显示了系统对比度(S)如何随着光对比度(K)而变化,为方便起见,假定P=1。 图2表明,随着光对比度的提高,系统对比度逐渐接近显示面板对比度。 此外,还显示了"收益递减点",那就是当光对比度是显示面板对比度的4到9倍时。
(图字)系统对比度S;假设显示面板对比度P=1;光学系统对比度K
图2-系统对比度与光学系统对比度
公式5显示了环境光亮度对所显示的对比度 (CRDISPLAYED) 的影响。
(5)
如果没有环境光(环境光=0),则将本机投影机对比度 (CRPROJ_NATIVE) 作为WhitePROJECTED/BlackPROJECTED ,得出以下结论: 1) 当 Ambient = BlackPROJECTED时,随着CRPROJ_NATIVE的增加,CRDISPLAYED 逐渐接近0.5 * CRPROJ_NATIVE ;2)。 随着 Ambient 逐渐接近 WhitePROJECTED,CRDISPLAYED 逐渐接近2,会产生非常糟糕的显示效果。
对比度与技术
在理想情况下,应选择具有最高内在对比度的显示技术,并根据需要优化系统对比度,以达到目标整体对比度。
2D MEMS的内在面板对比度取决于从MEMS结构散发出来的光的数量。 将光学系统设计为采用较大的(较慢的)光圈系数,可减少光散射,此外还能减小系统光学元件的尺寸,降低其成本,但会损失一些亮度。
LCD/LCoS的内在对比度基本上取决于面板是否能够完全将光偏振旋转到"关"位置,这种能力因面板设计而异。
扫描镜的对比度与激光驱动电子器件能否完全关闭激光器息息相关。
结束语
本文探讨了对显示分辨率、色域、亮度和对比度等方面的要求。 此外,还讨论了当前可用的显示技术是否能够满足这些要求。
扫描镜显示器通过使用激光器获得了较高的分辨率、色域、亮度和对比度,但代价是牺牲色斑,另外激光器的成本也较高。
LCD/LCoS显示器借助显示面板的内在分辨率实现较高的分辨率,从光源(LED、激光器、灯)获得色域。 其亮度取决于光学系统设计可以实现的效率,当使用LED和灯时,会受到所选偏振技术的限制。 其对比度取决于面板是否能够完全将光偏振旋转到"关"位置。
2D MEMS显示器(德州仪器DLP®技术)显示器借助显示面板的内在分辨率实现较高的分辨率,而2D MEMS面板能够提供常见分辨率(VGA、XGA、WXGA、720p、1080p等),从光源(LED、激光器、灯)获得色域。 同样,该显示器的亮度基于光学系统的效率,但没有偏振限制。 2D MEMS的内在对比度源自于MEMS结构的散射,可借助较大的(较慢的)光圈光设计来减少这一影响。 目前领先的2D MEMS技术的一个非常独特的特性是,能够采用数据处理技术,可增强感知亮度和对比度,或配置为降低能耗。
投影显示器 相关文章:
- LT3751如何使高压电容器充电变得简单(08-12)
- 三路输出LED驱动器可驱动共阳极LED串(08-17)
- 浪涌抑制器IC简化了危险环境中电子设备的本质安全势垒设计(08-19)
- 严酷的汽车环境要求高性能电源转换(08-17)
- 适用于工业能源采集的技术 (08-10)
- 单片式电池充电器简化太阳能供电设计(08-20)