基于MEMS加速度计的振动监控解决方案
于1 Hz至1000 Hz频率范围的关系曲线开始。为了简化讨论,本案例研究中的所有计算均假设全部频率范围内的噪声密度为恒定值(φND = 80 μg/√Hz)。图5中的红色频谱曲线表示带通滤波器的频谱响应,绿色竖直线表示单一频率(fV)振动的频谱响应,其对基于速度估计分辨率和范围会很有用。
图5.研究案例的噪声密度和滤波
此过程的第一步是利用等式9估计四个不同噪声带宽(fNBW)产生的噪声(ANOISE):1 Hz、10 Hz、100 Hz和1000 Hz。表2用两个不同单位的线速度给出了这些结果:g和mm/s2。g在多数MEMS加速度计规格表中相当常见,但振动指标常常不是以此来提供。幸运的是,g和mm/s2的关系已为大家熟知,参见等式13。
本案例研究的下一步是整理等式12中的关系,以导出一个简单的公式(参见等式14)来将总噪声估计(来自表2)转换为线速度项(VRES、VPEAK)。除了提供此关系的一般形式之外,等式14还提供了一个特定例子,其使用10 Hz的噪声带宽(及2.48 mm/s2的加速度噪声,来自表2)。图6中的四条虚线表示所有四种噪声带宽下相对于振动频率(fv)的速度分辨率。
图6.峰值和分辨率与振动频率的关系
除了显示各带宽对应的分辨率之外,图6还有一条蓝色实线,其表示相对于频率的峰值振动水平(线速度)。这来自等式15中的关系,其一般形式与等式14相同,但不使用分子中的噪声,而使用ADXL357支持的最大加速度。注意,分子中的系数√2会放大此最大加速度以反映均方根水平,假设采用单一频率振动模型。
最后,红框说明如何将此信息应用于系统级要求。此红框中的最小(0.28 mm/s)和最大(45 mm/s)速度来自关于机器振动的常用工业标准中的一些分类水平:ISO-10816-1。将关于ADXL357范围和分辨率曲线的要求放在一起便可快速得出一些简单的结论,例如:
测量范围的最差情况是在最高频率时,ADXL357的±40 g范围似乎能够测量很大一部分的ISO-10816-1相关振动模式。
当用噪声带宽为10 Hz的滤波器处理ADXL357的输出信号时,ADXL357似乎能够在1.5 Hz至1000 Hz频率范围内解析ISO-10816-1中的最低振动水平(0.28 mm/s)。
当用噪声带宽为1 Hz的滤波器处理ADXL357的输出信号时,ADXL357似乎能够在1 Hz至1000 Hz的全部频率范围内解析ISO-10816-1中的最低振动水平。
结语
MEMS已是成熟的振动传感器,在现代工厂CBM系统的技术融合完美风暴中发挥着重要作用。检测、连接、存储、分析和安全领域的新解决方案全都互相融合,为工厂管理者提供完全集成的振动观测和过程反馈控制系统。虽然很容易迷失在所有此类惊人技术进步所带来的兴奋之中,但人们仍需要了解如何将传感器测量结果与实际条件和其代表的含义联系起来。这些简单的技术和见解提供了一种将MEMS性能规格转换为使用熟悉的单位表示的其对关键系统级标准影响的方法,CBM开发商及其客户将能从中获取价值。
参考电路
1. Gerald C. Gill and Paul L. Hexter. "IEEE地球科学电子论文集。" IEEE,第11卷第2期,1973年4月。
- MEMS振动监控系统设计简介(08-05)
- Ka 波段下90°分布式MEMS 移相器的优化设计(04-02)
- MEMS加速度计在声学拾音器中的应用(09-30)
- MEMS光开关性能与发展(10-24)
- 汽车上都有哪些mems应用(11-28)
- MEMS加速度传感器在胎儿心率检测仪中的应用(11-19)