超宽带PLL/VCO替代YIG调谐振荡器硅片
RF和微波仪器(比如信号和网络分析仪)需使用宽带扫频信号来进行大多数基本测量。 但宽带压控振荡器(VCO)通常会因最大限度扩大调谐范围所需的低Q和高KVCO(VCO的调谐敏感度,单位:MHz/V)而具有最糟糕的相位噪声。 钇铁石榴石(YIG)调谐振荡器凭借良好的宽带相位噪声性能和一个倍频程频率调谐范围巧妙地解决了该问题,但体积可能较大且费用昂贵,并且可能因其调谐电流而需耗用数百mA的电流。 因此,该振荡器仍需外部锁相环(PLL)来闭合环路以及压控电流源来提供调谐电流。
YIG晶体球类似具有高Q值的LC电路,其谐振频率与外加磁场成线性比例关系。 通过一个倍频程或多倍频程GHz范围内的单匝回路电流可调谐该振荡器。 YIG调谐振荡器的相位抖动低,具有约2 GHz至18 GHz的宽频段特性(线性明显的调谐曲线),是许多测量应用的普遍选择。
YIG调谐振荡器与集成PLL/VCO IC之间的性能差异正在缩小。 例如,最新推出的集成PLL/VCO IC(比如ADI的ADF4355($20.6160))与其前款产品相比,相位噪声得到极大改善。 该类产品还通过设计技术解决了宽频段调谐范围问题,比如将输出频率范围分成多个相邻的子频段,其中每个子频段都具有专用的频段切换VCO(类似具有适中KVCO的单个VCO)(如图1所示),可增大调谐范围。 另外,辅助倍频器和分频器分别通过对上限频率进行倍频和对下限频率进行分频扩大了VCO的频率调谐范围。 例如,ADF4355基本调谐范围(3.4 GHz至7.2 GHz)的下限扩展为54 MHz分频。 每当进行1/2分频时,相位噪声可改善3 dB(如图2所示)。
图1. ADF4355 PLL/VCO中的多频段VCO由一系列振荡器组成,每个振荡器调谐整个频段的一部分并在整个频段范围内保持统一的KVCO和VTUNE 调谐电压的曲线图形似锯齿,因为每个振荡器都通过与电压可变电容并联实现一次一个开关的固定电容器最大限度扩大每个VCO的总体调谐范围。
图2. 每次对输出频率进行1/2分频时,总体相位噪声改善3 dB 在本例中,对3.4 GHz VCO进行64分频所得到的相位噪声要好于−130 dBc/Hz(53.125 MHz时,偏移为10 kHz)。
不过,即使集成PLL/VCO IC与YIG调谐振荡器相比具有更宽的调谐范围,仍存在以下问题: YIG调谐振荡器的相位噪声性能与最好的集成VCO相比,仍具有12 dB的优势。 即使该性能差异可通过组合多个并联的PLL/VCO(如图3所示)的输出来缩小。 输出可叠加,且每次倍增并联的PLL/VCO数可使相位噪声改善3 dB。 例如,两个ADF4355 PLL/VCO可使相位噪声改善3 dB,四个ADF4355 PLL/VCO可使相位噪声改善6 dB,八个 ADF4355 PLL/VCO可使相位噪声改善9 dB(如图4所示)。
图3. 同步多个PLL/VCO并组合其输出后,每次倍增VCO数可使相位噪声改善3 dB 此处所示的四个并联的ADF4355可使总体相位噪声改善6 dB。
图4. 与使用单个PLL/VCO相比,锁定相位并组合八个ADF4355 PLL/VCO的输出可使总体相位噪声改善约9 dB 此处的频谱显示单个ADF4355的输出相位噪声以及八个同步ADF4355(并联工作)叠加输出的相位噪声。
叠加PLL/VCO输出的关键是操作相位内所有振荡器的输出。 本文所述示例使用四个并联的PLL/VCO。 可以想到的是,在同一印刷电路板上放置频率相同的四个锁相环和压控振荡器会带来各种难题。 其中的主要难题是隔离。 PLL之间的隔离效果差可能导致注入锁定(如图5所示)现象,在这种情况下,振荡器会优先锁定至强信号或谐波,而非锁相环自身调谐电压所选的频率。 两个锁定机制形成互调失真时,只要发现噪声性能和杂散信号有略微降低,即可观察到注入锁定。 如果失真更严重,该信号将更像调制载波而非连续正弦波。
图5. VCO频率锁定到外部振荡器而非其控制电压时发生注入锁定 结果是互调和相位噪声增大。
隔离需要各种技术和电路。 例如,使用缓冲器(本例中为ADI ADCLK948($6.1440) LVPECL 8:1时钟缓冲器)将参考信号缓冲到每个PLL(引脚REFINA和引脚REFINB)。 此外,最大限度减少串扰需要正确端接电源,且负载引脚尽可能靠近电源和负载。 另外还需接地的分流电容(18 pF),以便在通过所需参考频率时衰减VCO输出的任何漏电流。
其他需要隔离的是电源线路。 要实现所需隔离,每个PLL都应当具有自己的高性能调节器(ADI ADM7150($4.3680)),可分别用于+5 V线路(VVCO、VP和VREGVCO),而在本文中VCO电源更为重要。 模拟(AVDD)线路、数字(DVDD)线路和输出级(VRF)线路也需要3.3 V,因此每条线路同样使用各自的调节器。 只要去耦良好,即可将每
- 用于以太网物理层时钟同步PLL的VCO设计(04-01)
- 实例:用 PLL 实现超快频率切换(09-06)
- 级联型PLL时钟处理器对系统定时影响最小(02-11)
- “工程师的眼睛”之应用案例(02-27)
- 新兴的PLL + VCO支持紧凑型LO的解决方案(07-09)
- FPGA设计小Tips:如何正确使用FPGA的时钟资源(06-23)