微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 分离栅极闪存循环擦写引起退化分量剖析

分离栅极闪存循环擦写引起退化分量剖析

时间:06-23 来源:电子发烧友网 点击:

压,FG电势由EG-FG静电耦合控制。

  图5显示了SuperFlash单元的简化R-C图及其等效电路。其中,C1为EG-FG电容,C2为总FG电容与CFG-EG的差值,R为有效隧穿电阻。VEG线性斜坡(VEG=αt)和欧姆电阻R组成的等效电路中的瞬变具有简单的闭环解决方案:

  

  隧穿电流IR和EG-FG电压差均达到其稳定值(分别为αC2和αRC2),时间常量为R(C1+C2),请参见图6。对于隧穿I-V特性曲线为任意形状的实际FG单元,稳定后的隧穿电流值相同(αC2),稳定后的VEG-VFG之差对应于隧穿I-V曲线中的某个点。这种情况下的时间常量由隧穿I-V特性的差分电阻定义。

  图7(a)显示了使用非欧姆隧道电阻时施加的EG电压和FG电势的时序图。为监视VEG变化期间FG电势的变化情况,WL沟道需保持开路(3V),并向漏极施加一个较小的正向偏置电压(见图7(a)中的插图)。起点为单元的已编程状态(A点,FG负电势)

  

  图8 不同VEG摆幅下测量的FTV-RTV迟滞回路。曲线1(±10V),曲线2(±11V)。曲线6(±15V)。箭头指示EG电压斜升的方向。曲线1说明了相对较浅擦除状态作为起点时的情况:隧穿开始前,FG沟道由EG-FG电容耦合关断。

  在A-B间隔内,FG电势因EG-FG电容耦合而增加,即,它以低于EG电压的速率增大;这样便产生了EG-FG电压差。一旦此压降增大至足以启动FG至EG(B点)的电子隧穿,EG-FG电压差和隧穿电流都将保持稳定。VEG反向变化期间也会出现类似效果。VEG线性斜坡期间,当隧穿电流保持稳定时,EG-FG电压差也会处于稳定状态,这样,FG电势便会直接跟随施加的EG电压并带有一些偏移量。当VEG为正时,FG电势等于正向隧穿电压(FTV);当VEG为负时,FG电势等于反向隧穿电压(RTV)(图7(b))。在稳定隧穿状态下,由于EG电压的任何增量都会直接传递给FG电势的变化,因此测量的Id-VEG曲线的形状与Id-VFG特性曲线的形状相同,此特性曲线可在直接接触浮置栅极的单元上测量(图7(b)中的曲线3)。

  我们最初使用上述方法来研究SuperFlash 单元中正向和反向EG-FG隧穿的不对称性[3]。FTV-RTV不对称性(FTV 《 RTV)表示擦除期间在FG尖端发生电子隧穿。反向隧穿很可能发生在不同位置,因为FG尖端附近EG处的电场弱于FG-EG侧壁处的电场。由于隧道氧化层中的各区域(正向隧穿和反向隧穿期间会在其中发生电子转移)不同,因此常规烧写-擦除循环后的FTV往往会因隧道氧化层中发生的电子俘获而增大,而RTV则保持相对不变。如果VEG的范围宽到足以确保在VEG三角形范围的极点处进行单元深度擦除和烧写,则Id-VEG迟滞回路正向侧和反向侧的X轴位置对FG上的初始电荷量不敏感(图8),并且仅由FTV/RTV和FG Vt值定义。当因FG氧化层中发生烧写引起的电子俘获而使FG Vt增大时,回路两侧均会右移相同电压。回路右侧(FTV)也会因隧道氧化层中的电子俘获而移向更高的电压。

  

  图9 循环擦写后FTV-RTV迟滞回路偏移示例:(a) 未优化的编程条件,FG沟道显著退化;(b) 优化了工艺和工作条件,FG沟道和隧道氧化层略微退化;(c) 以VEG=±12V进行循环擦写,无沟道退化,因此,假设RTV不随循环擦写变化,循环擦写引起的反向特性正移(图7(b)中的曲线2)表示第一个退化分量(FG氧化层Vt增大),而正向侧的偏移(图7(b)中的曲线1)表示FG氧化层和隧道氧化层退化的联合作用。

  实验数据和讨论

  前几代SuperFlash技术依靠源极-FG电容耦合来提供必要的高FG电势,从而实现高烧写效率[1]。如果烧写期间的SL电压较高(8V-10V),则热电子会引起FG氧化层发生显著退化。在第3代SuperFlash单元中,由于存在额外的耦合栅极(CG),因此可将编程期间的SL电压降至4V-5V,从而明显减少编程引起的FG氧化层退化。通常,我们在隧道氧化层中观察到的电子俘获是循环擦写引起的擦除退化的主要因素,FG氧化层退化只起到很小的作用。如果FG氧化层发生明显退化,则可能表示FG氧化层的质量欠佳或未采用优化的烧写条件。图9给出了循环擦写前和循环擦写后FTV-RTV迟滞回路在不同退化分量比率下的示例。图9(a)显示了采用未优化编程条件(导致FG沟道发生显著退化)时的效果,这一因素占总擦除性能退化的30%。图9(b)给出了FG沟道略微退化的示例,FG Vt的变化约为0.1V。图9(c)说明了使用EG-FG正向和反向隧穿时单元的循环擦写情况。在这种情况下,FG氧化层不退化,迟滞回路偏移的原因是循环擦写引起FTV和RTV值增加。
  总结

我们提出了一种简单快速的方法来分析SuperFlash分离栅极存储单

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top