微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 压电传感器的信号调节

压电传感器的信号调节

时间:02-23 来源:本站整理 点击:

● 在第一项中,如果INA≈0.3 fA/√HZ ,且RFB = 270MΩ,则该项对输出噪声的贡献值约为80 nV/√HZ /5.85=14nV/ √HZ 。

● 在第二项中,如果 EA ≈ 130nV/√HZ ,则这一项对输出噪声的贡献值约为 260 nV /√HZ 。

● 在第三项中,如果RFB = 270MΩ,则这一项对输出噪声的贡献值约为 (2 μV/ √HZ /5.85=340nV /√HZ 。

把所有这三项二次方相加,得到约为430 nV/√HZ ,如图13所示,其非常接近包括经校准噪声源的图12所示电路的仿真结果。
 

图13 图12 所示电路的输出噪声仿真

现在,请思考噪声变化与反馈电阻的对比结果。将方程式7第一项的RFB从270 MΩ改为540MΩ(且把CFB除以2,从680 pF降至340pF,目的是保持极频恒定),对输出参考噪声产生如下影响:

● 在第一项中,如果INA≈0.3 fA/√HZ ,且RFB =540MΩ,则该项对输出噪声的贡献值约为160nV/√HZ /5.85=28nV/√HZ 。

● 在第二项中,如果EA ≈ 130nV/ √HZ ,则这一项对输出噪声的贡献值约为320 nV/ √HZ 。

● 在第三项中,如果RFB = 540MΩ,则这一项对输出噪声的贡献值约为3 μV/√HZ /5.85=510 nV / √HZ 。

把所有这三项二次方相加,得到约为600nV/√HZ ,其再次接近仿真结果(参见图 14)。不出所料,输出噪声上升。然而,电阻加倍允许电容除以2,从而有效地使增益加倍(即输出信号加倍)。即使RFB为主导噪声源,且它的增加会使其噪声增加,我们也可以实现3dB的SNR改善,因为输出信号加倍远超出增加的噪声。

图14 RFB加倍而CFB 减半后图12所示电路的输出噪声仿真

其他实际问题

利用T型网络构建等效大电阻

当我们需要在反馈网络中使用非常大的电阻时,利用由许多更小、更易使用的元件构成的一个T型网络来构建这些大电阻,对我们很有吸引力(参见图15)。但我们一般不建议使用这种方法,因为T型网络会带来偏置和噪声大增益,从而一般会产生更糟糕的 SNR.

图15 T型网络反馈电路

使用差分输入

到目前为止,我们只字未提使用差分输入来降低噪声的好处。为了简单起见,我们以单端对建模放大器进行了分析,而图16显示的是一个带差分输入的改进配置结构。这种配置结构同时具有两个优势:

1、它固有两倍单端输入电路增益(电荷整合到C2和C4中),而噪声仅以平方根函数增加(即噪声源不相关)。

2、电荷放大器是一种非常敏感(高增益)的电路。图17表明任何输入干扰信号的电容耦合(此处为60Hz极板网栅)都会有效注入电流。就单端放大器而言,这意味着端子中的一个注入电流,而其他则接地;也就是说,放大器只会放大干扰信号。就差分输入来说,施加于两个端子的共模信号会相互抵消(假设寄生和反馈网络相同)。图18中,需要注意的是单端输入(蓝色轨迹)60Hz极板网栅的耦合结果,以及60Hz共模噪声如何被干扰信号(黄色轨迹)相互抵消的差分输入极大降低。本例中,为了方便理解,我们并没有尝试匹配超出10%组件容限的差动输入。

图16 使用差分输入的改进电路

图17 60Hz共模噪声源对差分输入放大器影响情况模型

图18 差分放大器基本消除了共模噪声

结论

用户能够想到压电传感器,是因为这些器件可根据其失真情况输出电荷。就此而论,电荷放大器非常适合于这种应用。本文介绍了设计这种电路时需要牢记的一些一般性原则,例如:尽可能多地增加反馈电阻,密切注意放大器的输入偏置电流,以及使用一种差动结构等。本文还阐述了细化仿真以前进行理论分析的有效性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top