微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 压电传感器的信号调节

压电传感器的信号调节

时间:02-23 来源:本站整理 点击:

引言:本文介绍信号调节的一些原理。我们利用压电传感器来阐述这些原理,因为其调节要求综合使用许多传统工具,并且此类传感器具有一些其他类型传感器所没有的挑战。

压电传感器

用于感应和激励的压电传感器应用延伸到了许多领域。本文主要介绍对一些物理强度的感应,即加速度、振动、振荡和压力,从传感器及其要求信号调节的角度来看其可以被认为是类似的。就加速度而言,传感器灵敏度通常被表示为一个与外力即加速度(大多数时候称作重力加速度g)成比例关系的电荷。然而,从严格物理意义上来讲,传感器输出一个实际由其变形/偏斜情况决定的电荷。

例如,图1显示了安装于顶部位置的一个传感器,与此同时底部正受到一个外力的拉拽,即Fext.在使用加速计的情况下,固定端(顶部)会粘附在要测量加速度的物体上,同时外力为粘附于另一端(底部)的质量的惯性,而这一端不断想要保持静止。就固定于顶端的参考坐标系而言(假设传感器充当的是一个弹簧,其具有很高的弹簧系数 K),偏斜x会形成一种反作用力:

Fint = Kx (1)

最终,质量(传感器偏斜)将会在下列情况下停止移动/改变:

Fint = Fext = Kx (2)

图1 加速度力作用下的传感器

由于电荷Q与偏斜成比例关系(一阶),而偏斜与力成比例关系,因此Q与力也成比例关系。施加一个 Fmax 最大值的正弦力,会形成一个Qmax最大值的正弦电荷。换句话说,当正弦力为最大值时,对来自传感器的电流求积分可得到Qmax.增加正弦波的频率,同时会增加电流;但是会更快地达到峰值,即保持积分(Qmax) 恒定。厂商会以传感器可用频率范围内Qmax与Fmax的比率来说明灵敏度规范。但是,由于传感器的机械性质,传感器实际上有谐振频率(可用频率范围以上),其中一个即使很小的振荡力都会产生相对较大的偏转,从而得到较大的输出振幅。

如果忽略谐振的影响,则我们可以将压电传感器一阶建模为一个与传感器寄生电容(此处称作Cd)并联的电流源,或者也可以将其建模为一个与Cd串联的电压源。该电压为存储电荷时在传感器阳极上看到的等效电压。但是,我们需要注意的是,就许多应用的仿真而言,第二种方法要更加简单一些。如前所述,电流与偏斜变化的速率成比例关系;例如,拿恒幅加速度的正弦AC曲线来说,电流生成器的振幅必须根据频率来改变。

最后,如果这种生成器需要代表实际物理信号,则可以使用变压器,如图2所示。本例中,我们建模了一个具有0.5pC/g灵敏度和500pF寄生电容的生成器。正弦波生成器每单位g输出1V以实现仿真。变压器在其次级线圈将它向下调节至 1mV.施加给C1(500 pF)的1mV摆动,将会如我们预计的那样在下一级注入 Q = VC = 0.5 pC.

图2 压电传感器模型

电荷放大器分析

图3显示了经典电荷放大器的基本原理,其可以用作一个信号调节电路。这种情况下,我们选择电流源模型,表明传感器主要为一种带高输出阻抗的器件。

图3 用于信号调节的电荷放大器

输入阻抗

信号调节电路必须具有非低的输入阻抗,以收集传感器的大部分电荷输出。因此,电荷放大器是理想的解决方案,因为只要放大器在这些信号频率下保持高增益,其输入便会让传感器信号出现虚拟接地。换句话说,如果传感器的任何电荷想要在传感器阳极(Cd)或者放大器输入寄生电容(Ca)上增大,在放大器输入端就会形成电压。通过拉或吸取相同量的负反馈网络电荷电流,即RFB和CFB,这种电压便立即得到了补偿。

增益

由于放大器的信号输入为虚拟接地,因此输入电流形成了一种输出电压摆动;并且高频增益由CFB的值设定(RFB 影响减小,在"带宽"部分后面再进行叙述)。请注意,电容越小,增益越大。增益的近似值为:

还需注意,电路增益根本上并非取决于传感器的电容(Cd),但最好还是注意该值对噪声的影响。

带宽

为了能够正确地对放大器进行偏置(为放大器输入偏置电流提供一个DC路径),一个反馈电阻(Rf) 是必需的。在更低频率下,反馈路径的电容电路变为开路,而反馈电阻变为主要电阻,从而有效降低增益。在较高频率下,电容电路的阻抗变得更小,从而有效消除电阻反馈通路的影响。对AC物理激励的最终电路响应(包括传感器的寄生电容)为高通滤波器的响应,其极频为:

相关信号带宽由应用决定,因此,降低电容增加增益的同时,也需要增加电阻来保持低极频。增加电阻会影响解决方案的其他方面。除影响噪声以外(在"噪声"部分详细介绍),电阻越高,实际实现就越难-难在寻找到现成的电阻,以及保证

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top