插电式混动核心技术解析
插电式混合动力汽车(PHEV)综合了纯电动汽车(EV)和混合动力汽车(HEV)的优点,既可实现纯电动零排放行驶,也能通过混动模式增加车辆的续驶里程。在后补贴时期,政府补贴减少、消费者里程需求增加、电池成本降幅较小且车辆售价不能上涨,为PHEV提供了发展机遇。混动方案合理化、动力系统集成化、核心部件专用化和控制策略创新性设计是提升PHEV性能的关键核心技术。
1.发展PHEV的原因
1.1 PHEV符合技术路线
节能和新能源汽车技术路线图中规定,至2020年、乘用车新车平均油耗5L/100km,至2025年、乘用车新车平均油耗4 L/100km。
图1为传统车、HEV和PHEV油耗随质量的变化趋势,随着整备质量增加,各车型的油耗均正比例上升。由图1可知,整备质量较大的B级车必须依靠PHEV技术才能将油耗控制在5或4L/100km以内,与"以紧凑型及以上车型规模化发展插电式混合动力乘用车为主"技术路线保持一致。
图1 车辆油耗与整车质量变化关系
1.2两级补贴大幅退坡
按照既定的退坡方案,250公里以上车型两级补贴在北京和天津分别下降2.2和2.75万。从整车成本方面考虑,零部件成本下降是解决补贴退坡最直接途径,但难度较大。
表1 补贴退坡统计
1.3零部件价格无大幅下降可能
理论上零部件价格下降可减少补贴退坡的压力。但近期由于铜材等价格上扬,零部件价格在2017年上半年只能维持现有状态、小幅波动,无大幅下降可能。因此,近期通过零部件降本平衡补贴退坡可能性不大。
1.4续驶里程持续增加
表3为热销车型续驶里程的统计情况,续驶里程需求持续增加。里程增加,除了轻量化和再生制动优化外,最直接方式就是增大电池容量,电量增加导致整车成本上升。
表3 热销车型续驶里程统计
1.5 PHEV可平衡各种制约因素
PHEV可平衡补贴退坡、零部件价格和里程增加之间的矛盾。 PHEV的混动模式可解决纯电动里程问题;电池电量小,批量后可解决电量增加的成本问题;电池成本所占比例减少,对电池成本的敏感度降低。
表4 PHEV综合优势
PHEV在国内推广阻力之一,就是认为在不充电的情况下、即进入能量维持CS阶段后,此时车辆与传统车无异,给出了"95%以上的车主都在以传统汽油车的模式运行插电混动车,建议取消插电混动的特定补贴"的建议,作者发表了"插电式混合动力=纯电动+强混≠纯电动+传统车",解释了不充电情况下PHEV仍省油的原理。不充电情况下,PHEV比同等重量燃油车省油30%,这是获得两级补贴最基本条件,性能较好的PHEV在CS阶段可节油40%。
2.PHEV关键核心技术
2.1 混动方案合理化设计
表5为国内外各主流混动方案的对比分析, EDU代表上汽的双电机、双离合器、两挡AMT的集成方案;PGS为行星排耦合方案;P系列根据电机位置进行定义,P0和P1分别表示BSG和ISG方案,这两种方案不能实现纯电动模式,不能用于PHEV;P2和P3分别表示电机集成于变速器的输入和输出端,P4表示电机集成于后桥的ERAD结构,P04表示前轴为P0方案、后轴为P4结构。三菱欧蓝德更加复杂,前轴为P12、后轴为P4,组成了P124混动架构。
由表5可知,可作为PHEV结构的各种方案均可实现30%以上的节油效果,相对于其他方案,电机与有级式自动变速器方案比较适合于自主品牌,P2和P3方案更适用于自主品牌新能源轿车,P04可实现电子全时四驱功能、适用于SUV。
表5 各种混动方案对比
2.2动力系统集成化设计
前舱的总布置是乘用车混动系统的难题之一,由于发动机、离合器和变速器均集成于此,横向尺寸非常吃紧、总布置上为ISG电机留出50mm的空间也比较难,所以很多方案放弃了效率较高的ISG方案,采用BSG方案解决总布置问题。广汽的GA5增程式混动更是采用发动机纵置方案,这种方案布置相对容易、但对于发动机工作时NVH优化提出了很大挑战。对于发动机频繁启停的插电式混动而言、发动机纵置可行性不大。
造成总布置困难的主要原因,就是总布置时采用简单的迭代累加方案,零部件越多、横向尺寸越长。
丰田等在集成化设计方向取得较大进展,作为全球销量即将迈入千万销量的THS系统、仍在不断探索混动系统优化设计问题。最新的第四代THS驱动电机MG2不再同轴,通过一个反转从动齿轮减速,并与行星齿轮组的齿圈结合。基于新的齿轮传动、新的电机和双电机平行布置,结构更紧凑,重量更轻,而扭矩相差不大。总长度比第三代缩小了47mm,零件数量和总重量分别降低20%和6.3%。
2.3 核心部件专用化设计
对于常用的P2或P3结构而言,可将减震系统或离合器集成到电
- 混合动力汽车(HEV)转换器与充电器解决方案(03-15)
- Freescale 混合动力传动系统解决方案(03-13)
- 混合能源电动汽车的技术应用研究分析(02-17)
- 浅谈汽车连接器设计标准及其应用案例(02-28)
- 车用栅极驱动器涵盖所有应用 助力汽车系统设计(05-07)
- 电动汽车和混合动力车设计的风险最小化及挑战管理(09-22)