关于人工智能这篇文章最易懂:原理、技术和未来
Facebook 官方博客更新,FAIR 主管、深度学习代表人物 Yann LeCun 与同事撰文,深入浅出解释什么是人工智能、人工智能如何影响我们的生活,以及在充满人工智能的未来我们将如何学习、工作和生活。Facebook 还推出了系列教学视频,帮你更好地了解人工智能。
星期二早上8:00。你已经醒了,扫了一眼手机上的标题,回复了一个在线帖子,为你妈妈订购了一件假日毛衣,锁上屋子开车上班,路上听一些好听的曲子。
在这个过程中,你已使用了人工智能(AI)十几次——被闹铃唤醒、得到当地天气报告、购买礼物、锁上你的房子、得知提醒即将到来的交通堵塞,甚至识别一首不熟悉的歌曲。
AI已经遍布我们的世界,它在日常生活中产生了巨大的变化。但这不是你在科幻电影中看到的AI,也没有神经紧绷的科学家猛击键盘,试图阻止机器摧毁世界。
您的智能手机、房子、银行和汽车已经每天都在使用AI。有时很明显,就像当你让Siri把你导向最近的加油站的,或者 Facebook 建议你提醒某个好友你在网上发布了一张图片。有时候则几乎看不出来,就像当你使用你的 Amazon Echo 用你的信用卡买一件平时不怎么购买的东西(比如一件花哨的假日毛衣),并且没有从银行得到欺诈短信提醒。
AI将通过推动自动驾驶汽车的发展、改善医学图像分析、促进更好的医疗诊断和个性化医疗,从而带来社会的重大转变。AI 也将是支撑未来许多最具创新应用和服务的基本架构。但对许多人来说,AI 仍然很神秘。
为了帮助你解开这些谜题,Facebook 正在创建一系列教育在线视频,概述AI如何工作。我们希望这些简单扼要的介绍将帮助大家了解复杂的计算机科学领域是如何工作的。
不是魔法,只是代码
首先,有一些重要的事要知道:AI是一门严谨的科学,专注于设计智能系统和智能机器,其中使用的算法技术在某些程度上借鉴了我们对大脑的了解。许多现代 AI系统使用人工神经网络和计算机代码,模拟非常简单的、通过互相连接的单元组成的网络,有点像大脑中的神经元。这些网络可以通过修改单元之间的连接来学习经验,有点像人类和动物的大脑通过修改神经元之间的连接进行学习。现代神经网络可以学习识别模式、翻译语言、学习简单的逻辑推理,甚至创建图像并且形成新的想法。其中,模式识别是一项特别重要的功能——AI十分擅于识别大量数据中的模式,而这对于人类来说则没有那么容易。
所有这些都通过一组编码程序以惊人的速度发生,运行这些程序的神经网络具有数百万单位和数十亿的连接。智能就源于这些大量简单元素之间的交互。
人工智能不是魔术,但我们已经看到它如何像魔法一样大幅推进科学研究,并在照片中识别物体、识别语音、驾驶汽车或将在线文章翻译成几十种语言的日常奇迹中扮演重要的角色。
在 Facebook 人工智能研究(FAIR)实验室,我们正在努力使学习机器更好地工作。其中很大一部分是所谓的深度学习。使用深度学习,我们可以帮助AI学习世界的抽象表征。深度学习可以帮助改善语音和物体识别等问题,并且有助于推进物理学、工程学、生物学和医学等领域的研究。
深度学习系统中一个特别有用的架构被称为卷积神经网络或 ConvNet。 ConvNet 是连接神经网络中单元的一种特定方式,受其他动物和人类视觉皮层体系结构的启发构建而来。现代 ConNet可以利用从7~100层的单元。在公园里,我们人类看到大牧羊犬和奇瓦瓦,尽管它们的体型和体重都不同,但我们却知道它们都是狗。对于计算机而言,图像只是一串数组。在这串数组内,局部图案,例如物体的边缘,在第一层中能够被轻易检测出来。神经网络的下一层将检测这些简单图案的组合所形成简单形状,比如汽车的轮子或人脸的眼睛。再下一层将检测这些形状组合所构成的物体的某些部分,例如人脸、腿部或飞机的机翼。神经网络的最后一层将检测刚才那些部分的组合:一辆汽车、一架飞机、一个人、一只狗等等。神经网络的深度——具有多少层——使网络能够以这种分层次的方式识别复杂模式。
一旦经过了大量样本数据库的训练,ConvNet 对于识别图像、视频、语音、音乐甚至文本等自然信号特别有用。为了很好地训练网络,我们需要提供给这些网络被人标记的大量图像数据。ConvNet会学习将每个图像与其相应的标签相互关联起来。有趣的是,ConvNet 还能将以前从未见过的图像及其相应的标签配对。由此我么就得到了一个系统,可以梳理各种各样的图像,并且识别照片中的元素。这些网络在语音识别和文本识
- 机器学习算法盘点:人工神经网络、深度学习(07-02)
- 自动驾驶技术到底什么时候能成熟?(09-12)
- AI/机器学习/深度学习三者的区别是什么?(09-10)
- 人工智能与机器学习差别与联系(10-07)
- Facebook人工智能母体技术解析(04-11)
- 一文汇总大数据四大方面十五大关键技术(10-11)