微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 基于MSP430与DTMF技术的医院呼叫对讲系统设计

基于MSP430与DTMF技术的医院呼叫对讲系统设计

时间:05-01 来源:互联网 点击:

对MT8888进行控制,使得RD和CS端有效,同时把代表所拨号码的4位二进制码传送至CPU处理。

  3.4 振铃检测电路

  当有用户呼叫本机时,电话交换机发来铃流信号,因此可以通过检测有无铃流信号来判断有无呼叫信号。本系统的振铃检测电路由4个二极管D1~D4,2个稳压二极管D5、D6,1个电阻R和1个电容C组成,IN1端与IN2端是铃流信号输入端,OUT1端与OUT2端是振铃检测输出端。当没有振铃信号输入的时候,稳压管D5不能导通,振铃检测电路的输出端电压近似为0V,此时检测结果为没有振铃信号;当有振铃信号输入的时候,由于二极管D1~D4组成的电路具有整流作用,信号变换成脉动直流电,通过电阻R对电容C充电,振铃检测电路的输出端产生电压,此时检测结果为有振铃信号。在电路中的稳压二极管D6的作用是限制振铃信号的幅值,防止输入电压过火而烧坏电路元件。

  3.5 摘挂机检测电路

  挂机检测电路用于检测摘挂机状态,并将其输入单片机控制系统。摘挂机的检测信号输入到单片机的P1.3引脚,磁铁装在话筒上,干簧管装在电话机内部,利用干簧管的合上与断开可以实现话筒和话机合上与断开。电话机摘机时,话筒和话机分开,由于失去了磁铁的吸引作用,干簧管的弹片断开,P1.3引脚输入高电平;电话机挂机时,话筒与话机合上,由于磁铁的的吸引作用,P1.3引脚输入低电平,这样可以通过查询P1.3引脚的电平状态来检测摘挂机。

  4 系统软件设计

  根据需要,设计出主机的呼叫工作流程图(如图5所示)。主机处在空闲状态下,即没有呼叫和通话时,走廊上的数码显示屏会显示实时的口期和时间等信息,同时主机会不断进行中断查询,判断此时是否有分机发送的呼叫信号,若没有的话就执行按键查询,判断是否拨号呼叫;当主机与分机进行通话时,双方接通后,此时数码显示屏会显示病人的相关信息,如病房号、床位号等。


  5 实验仿真分析

  为了验证DTMF信号的可靠性,应用MATLAB进行仿真实验。需要设置一组DTMF信号频率组,本实验选择按键"0"的DTMF信号,其对应的频率组为1 366 Hz和941 Hz,导入到MATLAB后可以得到该信号的时域波形图(如图6所示),再选择其它频率组进行仿真实验也得到类似的结果。由此实验可说明一组高低频率可以有效地组合成一个DTMF信号,并且能被准确的识别和处理,由于DTMF拨号速率的高效性,避免了传统的拨号方式带来的缺陷,确保信号准确无误地传送,可以肯定本系统的可行性。

  6 结束语

  本系统结构设计比较简单,以MSP430F149单片机作为控制核心,采用DTMF信号的通信技术,能有效地降低系统的成本,提高其可靠性和抗干扰能力。本系统的组装和维护方便,操作简单,便于医护人员和病人使用,病人能直接与值班室的医护人员交流,很好地改善了医患关系,让医护人员及时了解病人的现状,病人也能得到悉心的护理和对医院的信任度也有所提高。本文所研究的系统重点在于设计一个有效、方便的呼叫对讲系统,基本上达到了设计目标,但是科技总是不断发展的,技术会逐步更新,今后医院呼叫对讲系统的功能也会不断地完善。

 

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top