微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > VR利器惯性动作捕捉系统原理及优缺点解析

VR利器惯性动作捕捉系统原理及优缺点解析

时间:04-06 来源:雷锋网 点击:

惯性式动作捕捉系统在VR行业充分发挥作用。

  目前,Xsens采用的解决方案如下:

  首先对IMU所测得的传感器运动数据做预处理,滤掉原始惯性数据中掺杂的噪声干扰;

  然后不断地进行标定和校准,即不断地对各惯性器件进行相应的补偿以解决MEMS器件的零偏和漂移,提高其数据的精确度和可靠程度;

  接下来在进行姿态解算,并利用姿态参考系统验证姿态角度数据的精确度,最终实现整个惯性式动作捕捉。

  此外,与之不同的是,国内的G-Wearables则采用IK+室内定位技术做主动作捕捉算法,使用惯性式动作捕捉做辅助算法。这套方案中利用室内定位技术对惯性式动作捕捉技术做实时校准,避免了不断校准的麻烦。

  

  那么,什么是IK算法?

  首先介绍下IK算法及其在动作捕捉系统中的应用。

  IK是Inverse Kinematics的缩写,即反向运动学。

  在人体分层结构中,关节和骨骼实际构成了运动链,比如肩关节、肘关节、腕关节及其子骨骼就是一条运动链,是整个人体运动链上的一条分支,身体即是利用运动链对运动进行控制。运动分为正向运动和反向运动。已知链上各个关节旋转角,求各关节的位置信息和末端效应器(end effector)的位置信息,这是正向运动学的问题;而己知末端效应器的位置信息,反求其祖先关节的旋转角和位置,这是就是反向运动学。

  反向运动学根据决定运动的几个主关节最终角度确定整个骨架的运动,通常用于环节物体,由不同运动约束的关节连接成环节构成的分级结构骨架。分级结构骨架由许多采用分级方式组的环节链构成,包括分级结构关节或链,运动约束和效应器,由效应器带动所有部分同时运动。但必须遵循特定的等级关系,以便在变换时阻止各个部件向不同方向散开。如:投球动作,只规定出球的起始位置、终了位置和路径,手臂等即跟随关节的转动可按反向运动学自动算出。反向运动学方法在一定程度上减轻了正向运动学方法的繁琐工作,是生成逼真关节运动的最好方法之一。

  IK算法如何在动作捕捉系统中应用?

  如上文所说,如果己知末端效应器的位置信息,反求其祖先关节(也称父关节)的旋转角和位置,这是就是反向运动学。也就是我们通过室内定位技术,获取末端效应器的位置信息,然后利用IK算法推算出祖先关节的旋转角和位置,从而知道运动者的运动信息,再利用运动信息实现实时动作跟踪显示。

  这里所用的室内定位技术是激光定位技术,通过墙上的激光发射器扫描佩戴者佩戴的机身上的位置追踪传感器(即IK算法中的末端效应器),从而获得位置和方向信息。具体来说,这种室内定位技术是靠激光和光敏传感器来确定运动物体的位置。若干个激光发射器会被安置在对角,形成一个矩形区域,这个区域可以根据实际空间大小进行调整。每个激光发射器内设计有两个扫描模块,分别在水平和垂直方向轮流对定位空间发射横竖激光扫描定位空间。运动者身上有光敏传感器,通过光敏传感器接收到激光的时间计算出光敏传感器的准确位置。

  通过激光室内定位技术获取传感器的精确位置后,即可利用IK算法反向推算出祖先关节的旋转角和位置,从而知道运动者的运动信息。但是由于激光定位过程中可能存在遮挡问题,比如下蹲、拥抱、扭打等动作。于是应用惯性传感器做补充跟踪,即当出现遮挡情况时, 室内定位技术+IK算法相结合的动作捕捉技术无法完全准确地实现,这个时候利用惯性式动作捕捉技术可做补充。反过来可以利用室内定位技术对惯性式动作捕捉技术做实时校准,不需要另行校准,从而解决遮挡问题的同时,也避免了惯性式动作捕捉无法长时间精确工作的弊端。

  

  以上详细解析了惯性式动作捕捉系统的原理,优劣势等方面的内容,动作捕捉系统作为VR界的隐形钥匙,越来越多地被人们所关注。相信随着VR行业的迅猛发展,会有更多的更好的解决方案问世,笔者跟大家一样,期待有一天精准的VR动作捕捉技术可以走入我们的日常生活。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top