微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 电动汽车EPS数字模型与电路原理分析

电动汽车EPS数字模型与电路原理分析

时间:03-11 来源:网站整理 点击:

  转向系统是汽车的重要组成部分,其性能直接影响着汽车行驶的稳定性和安全性。早期的汽车转向系统为纯机械转向系统,没有助力,转向动力完全由驾驶员 提供,驾驶体验差。从上世纪30年代以后,逐渐出现了助力转向系统。目前,汽车助力转向主要有3种形式:液压助力转向系统(Hydraulic Power Steering,HPS),电控式液压助力转向系统(Electric Hydraulic Power Steeing,EHPS)以及电动助力转向系统(Electric Power Steering System,EPS)。
  相比前两种,EPS由电机提供辅助力矩,没有油系统,很大程度降低了汽车转向系统的复杂度,且在燃油效率、模块化、助力效果和环 境友好性等各方面具有明显的优势。根据EPS助力电机在齿轮和转向柱总成上位置的不同,EPS系统分为转向柱助力式、齿条助力式、小齿轮助力式和双小齿轮 助力式4种类型。小齿轮和转向柱助力式应用于轻型车辆,双小齿轮助力式应用于重型车辆。它们在构成上都具有3个基本部件:电控单元(Electrie Control Unit,ECU)、助力电机和安装在转向柱上的扭矩传感器。文中针对小型轿车,以美国Freescale公司的16位单片机MC9S12DP256为核 心进行了EPS控制器的设计。

  1 电动助力转向系统结构和工作原理

  电动助力转向系统结构如图1所示,主要由方向盘、扭矩传感器、电子控制单元(ECU)、电机、电磁离合器、减速机构、齿轮齿条转向器组成。在汽车发 动机点火后,转动方向盘时,由安装在转向轴上的扭矩传感器测得转向力矩,并送给ECU,ECU根据转矩和车速,通过预先设置好的助力特性曲线和控制策略计 算出一个电机所需的最佳电流,从而控制电机输出力矩和转动方向,然后经过减速机构施加到转向机构,最终得到一个与行驶工况相适应的转向作用力,辅助驾驶员 转向。

  

  2 控制策略

  2.1 EPS模型建立

  根据牛顿定律,可建立转向系统数学模型。

  

  其中:Th为方向盘输入转矩,Js为转向柱、盘总成转动惯量,Bs为输入轴阻尼系数,Ks为力矩传感器刚度系数,Tm电机输出力矩,Km为助力电机 和减速机构的刚度系数,Jm为助力电机转动惯量,Bm为助力电机阻尼系数,M为齿条质量,Br为齿条和转向轮粘性阻尼系数,Kr为齿条当量刚度,G为助力 机构传动比,rp为小齿轮半径,θs为方向盘转角,θm为电机转角,xr为齿条位移,Fr为转向阻力。

  2.2 助力特性曲线设计

  EPS助力特性是驾驶员输入转矩和电机助力力矩(助力电流)之间的关系。汽车在行驶过程中,转向阻力随着车速的增加而降低。为了获得汽车低速行驶时 转向的轻便性和高速行驶时的稳定性,在同种行驶状况下,电机助力力矩随着车速的升高而减小,并在车速超出一定范围时,电机不进行助力。常见的助力特性曲线 有3种:直线型、折线型和曲线型。直线型助力特性曲线形式简单,实际中容易调节和实现。因此,文中采用直线型助力特性进行控制器设计。

  2.3 控制算法

  EPS系统控制是对电机电流大小和方向的控制。其控制算法的好坏直接影响着转向系统的性能。本文采用目前广泛应用于工业控制领域的PID控制算法。 PID控制稳定性和可靠性高、实时性强、且控制与调试方法简单,易于实现,适合用于汽车电动助力转向系统的控制。因此,PID控制是现阶段EPS控制系统 主要的控制策略。

  3 硬件设计

  3.1 总体设计

  单片机是控制器的核心,其选型需要考虑适用性、可靠性、片内资源、价格等多种因素。单片机选型恰当与否直接影响机构控制系统的性能及设计难易程度 度。本设计采用Freescale公司的16位高精度MC9S12DP256单片机。MC9S12DP256内置5个CAN模块、2个8通道10位A/D 转换模块、8个PWM通道,总线速度25 MHz,采用5 V供电,112脚LQFP封装。此单片机,内部资源丰富,可大大简化控制系统硬件电路,其可靠性高,非常适用于EPS控制。设计中没有用到的管脚引到电路 板上,以便于后续开发。

  硬件设计如图3所示。车速、发动机、转矩信号经处理后送给MC9S12DP256单片机,经单片机计算后,得到电机助力电流值,经驱动电路后作用于 助力电机,控制电机输出力矩的大小和方向,同时对电机电流进行采样,并送回单片机,形成闭环控制。在助力控制基础上,设计了电机保护电路和故障诊断与提示 电路。一旦检测到故障存在,立即断开离合器,改用纯手动转向,并发出故障信号,从而保证了行车安全。

  

  3.2 控制系统硬件电路设计

  硬件电路设计主要包括电源转换电路、扭矩信号处理电路、车速信号处理电路、CAN通信电路、时钟电路。具体设计如下:

电源转换由

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top