微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 25T型空调客车DC600V DC110V8kW充电系统应用

25T型空调客车DC600V DC110V8kW充电系统应用

时间:11-16 来源:电子设计工程 点击:

25T型空调客车DC600V DC110V8kW充电系统应用研究

1 引言

    DC600V/DC110V8kW充电系统是为DC600V供电系统的25T型客车设计的专用系统,该充电系统由1个8 kW充电器模块和1个3.5 kV·A单相逆变器模块组成,为铁路空调客车蓄电池提供浮充电源。同时向其他直流负载供电,供蓄电池充电及照明控制等系统使用。

2 系统组成

    该25T型空调客车DC600V/DCI110V 8 kW充电系统是由单机和机柜两大部分组成,其中,单机部分主要有主电路和控制电路;机柜部分包括对外进线端子、输入输出回路熔断器和控制用的空气开关等。

2.1 PWM高频桥式逆变主电路分析及实现

    DC600V/DC110V 8 kW充电系统输入电压为DC600 V,功率为8 kW,采用适应高压变换的桥式整流电路和大功率DC/DC变换电路,图1为系统PWM高频桥式DC/DC变换的电路原理图。整个系统由输入隔离、滤波和缓冲电路组成。逆变桥由4只IGBT组成,高频变压器传输功率,变压器输出经高频整流和滤波后,供给直流负载和蓄电池。图2为由V1-V4构成DC/DC变换的主电路的控制逻辑和变压器原副边电压逻辑波形图:t1-t2区间内,V1和V4导通,变压器原边电压为正相电压;t3~t4区间内,V2和V3导通,变压器原边电压为反相电压。

    图3为25T型空调客车DC600V/DC110V充电系统主电路。分析图2、图3可知,开关元件IGBT功率模块(V1、V2)高频变压器的初级经隔离直流电容C8和电感L2接电桥的对角线。变压器次级接全波整流器(V56)和滤波器L3、C9、C10输出119~123 V直流电。主控制电路使用移相控制集成电路,UC3875(UC2875)为控制器件,输出两组(A-B,C-D)180°互补且滞后、时间可调的IGBT栅极触发信号。进一步分析可知,系统在t2~t3区间内所有IGBT都不导通,这段时间称为“死区”,以防止上下桥臂的两只IGBT同时导通而造成桥臂“贯通”短路。

    系统在设计时考虑充电器用的IGBT一般采用双单元,即在一个模块集成上下桥臂两个IGBT,电路结构虽然简单,但由于IGBT作频率很高,一般均在20 kHz左右,因此其开关损耗大,散热困难。为解决高频的开关损耗问题,系统采用移相技术实现IGBT的准软开关控制。移相软开关电路具有工作频率不变、控制简单、效率高、干扰小等优点。移相控制原理:利用变压器漏感和IGBT结间的电容谐振,漏感LK储能向电容C释放过程中,使电容C的电压逐步下降到0,二极管VD导通,创造0电压开关(ZVS)条件,电路中其他电感、电容元件是为获得可靠的零电压开关而设置的。电桥左右两个桥臂的上下两个开关管(V1和V2,V3和V4)施以180°互补的驱动信号,上下两管180°互补导通。除上下两管导通的死区外,电路中总有两个开关管同时导通,共有4种导通组合,即V1和V4,V4和V2,V2和V3,V3和V1,并按此顺序周而复始。其中V1和V4,V2和V3组合导通(即对角线导通)时,全桥电路给出能量,而V3和V1,V4合V2组合导通(即上桥臂两管或下桥臂两管同时导通)时,全桥电路处于续流状态不输出能量。调节这两种组合的时间比例,即移相角,变压器得到一个交变的PWM电压,从而调整输出电压、电流。

2.2 DC/DC变换的功能与特点

    为了减小充电器的体积和防止高压窜入低压系统,系统采用高频绝缘式DC/DC变换器,图4为其电路图。


    DC/DC充电器用于将输入的DC 600 V变换成适合蓄电池充电和直流负载使用的DC110V,并在输入电压和负载变化时,保持输出稳定即实现稳压功能。DC/DC充电器的输入保护和工作原理与逆变器相同,通过IGBT桥式逆变电路将DC600V电压变换成占空比可调的高频方波电压。占空比是指一个半波内,驱动IGBT的脉冲宽度占整个半波周期的比例。为了调整输出电压,占空比是可变的,属于脉冲宽度可调模式即PWM方式。

    该控制方式下,脉冲的幅值不变,当负载发生变化时,通过改变脉冲的宽度来保证输出电压的稳定;如果输入电压发生变化,也可通过改变脉冲宽度保证输出稳定。经变压器隔离后整流滤波成DC 110 V电压;对部分兼容供电25T型铁路客车则是先将AC 380 V整流变成DC 540 V,然后采取与DC 600 V相同的DC/DC变换。由VD1~VD4 4只高频快速二极管组成的整流电路对变压器副边输出的脉冲电压整流,并由电抗器L和电容C滤波。

    由于高频整流除要求较小的通态压降以减小导通损耗外,还要求具有快速的导通和关断能力,以减小开关损耗,因为在高频条件下,二极管的导通和反向恢复时间所引起的损耗

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top