微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > TDA8783在CCD相机视频信号处理中的应用

TDA8783在CCD相机视频信号处理中的应用

时间:04-18 来源:微计算机信息 点击:

0 引言
高分辨率可见光相机是航天遥感最重要的手段之一,在商业领域和科学研究领域也都具有广泛的应用前景。高分辨率可见光相机的发展,已经成为衡量一个国家科学技术水平的重要标志。目前,用户对地面分辨率的要求不断提高,发展高分辨率光学遥感器成为世界各国在空间遥感领域研究的热点。高分辨率可见光相机在国外发展较早,美国等发达国家已先后发展了高分辨率可见光相机。而我国高分辨率CCD相机的发展起步较晚,跟发达国家水平还有一定距离。影响相机分辨率的因素有很多,低噪声视频处理技术是实现相机高分辨率成像能力的关键之一。

1 CCD器件的噪声及噪声处理
CCD器件的噪声主要有光子噪声、散粒噪声、肥零噪声、转移噪声、暗电流噪声和输出噪声[1],噪声是影响CCD输出图像信号的主要因素。

在CCD应用中为抑制和消除上述噪声采取了以下措施[3]:

(1)在电路工艺上,增加直流电源的滤波,消除来自电源的干扰。缩短驱动电路与CCD器件的连线,降低时钟感应造成的尖峰干扰。数字地与模拟地分开,减少来自地线的干扰。

(2)对于转移噪声,采用将CCD电压取反倒置或提高衬底电压使CCD电压倒置,可以消除界面态俘获噪声;降低运行温度可以使俘获噪声明显成指数减小。

(3)对于散粒噪声,利用相邻像素(或相邻行)积分平均器法去除或相邻多帧取平均法。(4)暗电流噪声:对于各像元暗电流较平均的CCD来说,如果在像元阵列的起始处有少量暗像元,则对其输出信号采样存储,并与后续有效像元的输出信号采样值相减以去除暗电流噪声。但必须保证两次采样的积分时间和温度相同。

(5)对输出噪声可使用截至频率为2f(f为CCD读出频率)的低通滤波器。另外还有相关双采样法(CDS)、双斜积分法(DSI)、箝位切除法(CCS)等。

2 TDICCD视频信号处理
视频处理电路主要是去除复位脉冲干扰和噪声信号,由前置放大、相关双采样、箝位、滤波输出、行缓存、输出接口电路等环节组成。CCD视频处理电路如图2-1所示。

图2-1 视频处理电路原理框图

CCD图像传感器接收的图像信号经过前置放大后成为差分信号输出,经过差分接收电路后变换成单端视频信号,经过CDS进行相关双采样处理,得到“干净”的视频信号,再经过低通滤波器滤除CCD驱动脉冲的尖峰干扰,由可控增益放大电路放大到A/D转换器需要的电平,进行A/D变换,成为数字图像信号,并由缓存器(FIFO)交替缓存,由 LVDS接口芯片驱动后输出。

在实际设计中采用了Philips公司的专用CCD相机接口芯片TDA8783来实现。

2.1 TDA8783简介
TDA8783是PHILIPS公司的一种专用于CCD相机的10位模数接口芯片,主要由相关双采样电路(CDS)、增益控制电路(AGC)、箝位电路、低功耗10bit模数转换器(ADC)组成[5]。可通过对片上三线串口编程实现片内DACs分配来完成系统的各个功能。

2.2 前置放大电路
CCD输出的信号电平随积累电荷的增加而下降。为了进行长距离传输和减少传输过程中引入的共模干扰,需要进行放大和差分输出。前置放大作用就是对CCD的输出信号放大到足够的幅度。

本系统中前置放大器与CCD输出端之间采用交流耦合方式,消除了直流电平,有利于两级之间的匹配,同时也消除了温度等因素造成的零点漂移对传输信号的影响。当然,采用交流耦合会造成信号中直流成份的丢失,这可由后续的箝位电路来恢复其直流分量。

2.3 相关双采样(CDS)

为保证输出高信噪比的视频信号,就必须对噪声予以处理。相关双采样(CDS)技术,不仅可以很好地滤除复位噪声,而且对TDICCD传感器的水平时钟驱动及电源地线耦合串扰噪声、输出放大器的白噪声和1/f噪声等成份也有一定的滤除作用[4]。

在本系统中我们采用CCD相机接口芯片TDA8783实现CCD视频信号处理,它内部包含一个相关双采样(CDS)模块,能够有效地对CCD输出信号进行处理,很好地消除CCD的KTC噪声等。CDS可编程带宽为4~120MHz;输入峰值电压400mV;输出放大器增益 为6dB。在使用中,可以通过对外部三线串口编程来选择内部控制DAC来实现CDS功能。当串口移位寄存器地址A2A1A0=“001”时,片内4bit DAC工作控制CDS工作。本系统中采样速率为4MHz,在此4 bit DAC输入代码设置为D3D2D1D0=“0001”。

2.4 增益控制
为了适应不同亮度的目标,防止信号过弱或饱和,视频信号处理电路中应设计增益选择放大电路。根据地面目标的亮度,选用相应的增益。CCD相机接口芯片TDA8783内部集成了一个增益控制器(AGC),AGC输出最小增益为4.5dB,最大增益为34.5dB。TDA8783的增益控制内部逻辑关系如图2-2所示。通过对三线串口编程来实现增益控制功能,当串口输入移位寄存器地址A2A1A0=“010”时,9 bit控制DAC工作;当其输入代码为“00”时,为最小增益4.5dB,输入代码大于等于“319”时,输出增益为34.5dB。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top