μPD16305在等离子体显示器中的应用
16305高压输出驱动电路图。
图2中, A、B、C 三路信号是由同一信号(锁存器输出的信号)经过分离得到的。它们分别输入到高压输出驱动块的三个输入端,其中A和B信号反相,A和C信号同相。
当A=1、B=0、C=1时,N1、P1、N3导通,N2、P2、P3截止,输出OUT=0;
当A=0、B=1、C=0时,N2、P2、P3导通,N1、P1、N3截止,输出OUT=VDD2。
由图可见,这种输出结构不同于普通的互补输出结构。这种电路结构的优点在于:它可以用前级的数字电平,驱动后面的功率级电路,这对于普通的推挽输出结构来说,是根本达不到的。
对于如图3所示的普通的CMOS互补输出结构,假设VDD2=200V、GND=0V、Vthn=15V、Vthp=-15V。若要使Vout=GND,即要使N管导通、P管截止,就需要满足①Vgs>Vthn;②VDD2-Vgs<-Vthp。这样,栅极电压Vgs至少应该等于VDD2+Vthp,即Vgs至少应为200-15=185V,这就需要在芯片中加入电平转换电路,将CMOS数字电平提升到可以驱动功率管的高电平。对于40路输出的μPD16305来说,可以想象它所占的体积将是巨大的,因而不利于芯片的集成。
2 μPD16305在PDP驱动电路中的应用
μPD16305是一种CMOS结构的高压驱动电路,使用非常灵活。其输入可以是TTL电平,也可以是CMOS电平,高压输出调节范围可从0V~200V。其内部有一内置二极管,此二极管的阳极接在μPD16305的VSS2端,阴极接在μPD16305的VDD2端。由于PDP驱动电极(Y)波形出现有多种电压,所以驱动芯片μPD16305提供稳定、恒定的电源电压是不可能完成该波形的。解决多电源电压的方法是将μPD16305的高压电源和高压地“浮”起来运用,使驱动芯片的电源脚和地脚在不同时刻与不同电压相接,从而使芯片的输出符合相应的要求。
在维持期里,所有Y电极的波形完全一致。但在寻址期中扫描寻址时,各行的Y电极有效时间不同,出现有多种电压。所以在维持期和寻址期,可以通过MOS开关管的不同状态,使驱动芯片的电源脚和地脚在不同时刻与不同电压相接,以得到所需要的波形。这种连接方式降低了输出级MOS管上的电压,应用起来有很大的余地。
在驱动PDP时,在维持期和寻址期的初始化阶段,利用的是μPD16305的全高或全低工作状态(可参见表3);而在寻址期的扫描阶段,利用的是μPD16305的移位工作状态,以实现逐行扫描。
μPD16305作为行驱动器使用时,控制信号与μPD16305的具体连接方式如图4所示。
μPD16305的控制信号中,信号可直接接到低压电源VDD1上。因为在驱动电路中,只在逐行扫描阶段才利用了移位功能,而且移位是朝一个方向进行的,因此没有必要增加额外的信号产生器,将其接至某一固定电位即可。
其它的控制信号如A、CLK、STB、CLR等,可根据从PDP屏上测得的数据,用可编程逻辑器件来产生,这里我们采用的是Altera公司的FLEX10K10系列的芯片。
电源信号和地信号是通过电平转换电路驱动功率MOS开关管提供的,电平转换电路的控制时序由CPLD产生。最终产生的驱动波形如图5所示。
在实际应用中,要确保μPD16305所有的VDD1、VDD2、VSS1、VSS2管脚都要被使用,并且VSS1和VSS2必须接到同一电位上;由于μPD16305的管脚33在芯片内部被连接到了封装外壳上,所以必须保证此管脚开路,不能使用;为了防止器件发生闩锁效应,加电源时必须按照先加VDD1、再加逻辑信号、最后加VDD2的顺序进行;关断电源时,按照相反的顺序进行操作。
参考文献
1 MOS INTEGRATED CIRCUIT μPD16305.NEC DATA SHEET,1997
2 侯伯亨.硬件描述语言与数字逻辑电路设计.西安:西安电子科技大学出版社, 1999
等离子 相关文章:
- 等离子显示器(PDP)控制电源方案设计(01-03)
- 等离子显示器降功耗技术(07-27)
- 等离子体技术废水处理工艺工艺流程(02-22)
- 等离子电视关键技术探秘(02-28)
- 大屏幕拼接系统的分类及原理(05-14)
- OLED与LCD并非取代与被取代关系(05-27)