微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > 基于决策导向非循环图SVM的汽车车型识别

基于决策导向非循环图SVM的汽车车型识别

时间:08-29 来源:电子技术应用 点击:

3 实验分析

本文用MATLAB7.0进行仿真实验,主要选取轿车、面包车、公交车和卡车作为车辆分类图像模式比对的实验类型,选取了280个样本(每类平均70个),其中160个用于训练,120个用于测试。首先,构造了相应的SVM分类器,提取了180张车图像的特征值作为训练集,获取了最优分类面;然后,将剩余的120张汽车图像按照同样的过程进行特征值提取,再在训练好的支持向量机上进行分类,所得到的分类结果如表2所示,神经网络的实验结果如表3所示。



结果表明,与神经网络方法相比,DDAG SVM是一种对多类车进行分类切实可行的有效方法,不但分类精度高,而且识别效果也比较好。

为了解决对多类车的分类,本文提出了一种基于DDAG SVM对多种车型分类的方法,实验结果证明,DDAG SVM是一种对多类车进行分类切实可行的有效方法。由于实验中选用的车辆图片是以正侧面为主,与现实中任意方位角的车辆相比,还只是较特殊的一类,要具有普遍性,还得进一步继续深入研究。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top