电动汽车分布式电机驱动测试系统研究与应用
abVIEW下的VISA相关函数实现GPIB通讯,VISA资源名称为GPIB:6。用到的接口函数有:SH1, AH1, T5, L4, SR1, RL1, PP1, DC1, DT1, C0, E2。
本文采用模块化编程,各模块功能如下:
初始化:包括获取仪器地址,重置,选择工作模式。
仪器设置:设置采样频率,设置平均方式,超时时间设定。
触发:触发源设置,触发方式,软件触发。
数据设置:设置功率分析仪,读取所测变量。
读取并显示数据:使用"RED?"指令和VISA的Write和Read函数读取数据,并进行格式转换。
出错信息显示:出现错误时予以提示,并指出数据流出错环节。
关闭仪器:关闭总线I/O接口。
3.2 CAN通信
CAN总线(Controller Area Network)是一种具有很高保密性、有效支持分布式控制或实时控制的串行通信网络,目前在工业控制尤其是汽车工业中得到广泛应用。
完整的CAN总线通信接口的硬件部分应包括CAN收发器、电气隔离部分、CAN控制器等。本系统使用了2路CAN总线,分别制订两个不同的协议,以实现兼容,防止冲突。使用CRONOS PL/2 UNI8数据采集器作为两路CAN总线的网关。连接机械特性测试子系统的CAN总线命名为CAN0,其协议规定了转矩和转速的信息格式,内部信息调试子系统的CAN总线命名为CAN1,用于传输控制器内部运行参数和控制命令等。
其CAN通讯流程图如图4所示。
图4 CAN通信程序流程图
3.3 系统误差分析
对整个系统测量误差进行分析和计算,首先要分析子系统可能存在误差的环节。例如电气特性测量子系统可能引起误差的环节有:LEM功率分析仪误差、GPIB传输误差和存储数据类型转换误差;机械特性测量子系统可能引起误差的环节有:南峰电涡流测功机误差、A/D转换误差、CAN总线传输误差、数据采集器误差、以太网传输误差和存储数据类型转换误差。
以100/160kw交流异步电机驱动系统效率测试为实例进行误差分析:转矩工作范围为0~850Nm,转速工作范围0~4500rpm,最大输出功率160kw,最大输入功率190kw。南峰电涡流测功机扭矩测量精度为0.4%,转速测量误差不大于0.1%;LEM NORMA D6000功率分析仪的电流电压测量精度为0.05%,功率测量误差小于0.1%。合理设置总线及相关协议,可以实现数字信号的无损传输,同时选择数据存储类型,使计算机终端显示数据和测量仪器面板显示数据一致。
电机驱动系统效率
(1)
按照广义均方概合成法计算系统总不确定度
(2)
公式(2)中由于分项较少, 取2;分布情况不能确定,按均匀分布处理, 取 ;代入测功机和功率分析仪的不确定度的值:
(3)
带入数值计算得到
(4)
测试系统需求中要求各测量参数精度不低于0.5级,即误差控制在千分之五以内。经分析和计算,本系统所需测量参数的测量精度均满足测量需求。
4 结论
该系统现已在中科院电工所电动汽车实验室试运行。基于CAN总线、GPIB总线和以太网的分布式测试系统具有更安全可靠的数据传输,减少了手工记录造成的不可靠因素,增强了现场的信息集成能力,实现了电动汽车电机驱动试验系统的分布化、网络化和集成化。
- FPGA技术在汽车电子中的应用(11-26)
- 汽车发动机管理模块测试系统的设计(02-19)
- 基于LabVIEW的汽车助力转向控制系统设计(09-11)
- 基于虚拟仪器技术的汽车尾气检测系统(01-10)
- 基于LabVIEW和PXI的汽车数字仪表测控系统(02-17)
- 基于Labview & PXI的发动机管理模块测试(02-18)