微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 一文读懂人工智能芯片所有猫腻,CPU/GPU/FPGA等都有啥差异?

一文读懂人工智能芯片所有猫腻,CPU/GPU/FPGA等都有啥差异?

时间:03-03 来源:行业报告研究院 点击:

3.FPGA市场前景
随着科技的进展,制造业走向更高度的自动化与智能化,对工业控制技术等领域不断产生新的需求,在未来的工业制造领域,FPGA将有更大的发展空间。目前来看,有两个领域的应用前景十分巨大:

工业互联网领域
作为未来制造业发展的方向,工业大数据、云计算平台、MES系统等都是支持工业智能化的重要平台,它们需要完成大数据量的复杂处理,FPGA在其中可以发挥重要作用。

工业机器人设备领域
在多轴向运作的精密控制、实时同步的连接以及设备多功能整合等方面,兼具弹性和整合性的FPGA,更能展现设计优势。如汽车ADAS需要对实时高清图像进行及时的分析识别与处理;在人工智能方面,深度学习神经网络也需要进行大量并行运算。

4.FPGA现有市场
FPGA市场前景诱人,但是门槛之高在芯片行业里无出其右。全球有60多家公司先后斥资数十亿美元,前赴后继地尝试登顶FPGA高地,其中不乏英特尔、IBM、德州仪器、摩托罗拉、飞利浦、东芝、三星这样的行业巨鳄,但是最终登顶成功的只有位于美国硅谷的两家公司:Xilinx与Altera。这两家公司共占有近90%的市场份额,专利达到6000余项之多,如此之多的技术专利构成的技术壁垒当然高不可攀。

2015年6月,英特尔用史无前例的167亿美元巨款收购了Altera,当时业内对于英特尔此举的解读主要集中在服务器市场、物联网市场的布局上,英特尔自己对收购的解释也没有明确提到机器学习。但现在看来,或许这笔收购在人工智能领域同样具有相当大的潜力。

5.FPGA行业的开拓者:
英特尔能不能通过FPGA切入AI硬件市场?要讲清楚这个问题,我们必须要把视角从人工智能身上拉远,看看英特尔的整体战略布局。最近几年,英特尔的核心盈利业务CPU同时遭到了三个因素的狙击:PC市场增长放缓、进军移动市场的尝试失败以及摩尔定律逐渐逼近极限。单纯的卖CPU固然也能赚到钱,但只有研发更高端的芯片,形成自己领导者的形象,才能赚更多的钱,支撑公司的发展。

上述三个因素的同时出现,已经让英特尔发现,如果自己仍然只是安心的守着自己的CPU业务,很快就会面临巨大的危机,事实上在过去的一年里,利润下降、裁员的新闻也一直围绕在英特尔的身边,挥之不去。

因而英特尔十分渴望不要错过下一个深度学习的潮流,不过它缺乏自己最先进的人工智能研究,所以在过去的两年中疯狂地收购。2015年,英特尔用史无前例的167亿美元拍下了FPGA制造商Altera,2016年又相继兼并了人工智能芯片初创公司Nervana与Movidius。目前的英特尔正在试图将他们整合在一起。

6.Intel的产品布局
英特尔斥巨资收购Altera不是来为FPGA技术发展做贡献的,相反,它要让FPGA技术为英特尔的发展做贡献。表现在技术路线图上,那就是从现在分立的CPU芯片+分立的FPGA加速芯片,过渡到同一封装内的CPU晶片+FPGA晶片,到最终的集成CPU+FPGA芯片。预计这几种产品形式将会长期共存,因为分立器件虽然性能稍差,但灵活性更高。

如果简单的将英特尔对于人工智能的产品布局,可以分以下几层:

·Xeon Phi+ Nervana:用于云端最顶层的高性能计算。

·Xeon+FPGA:用于云端中间层/前端设备的低功耗性能计算。

英特尔下一代的FPGA和SoC FPGA将支持Intel架构集成,大致如下:代号为Harrisville的产品采用Intel 22nm工艺技术,用于工业IoT、汽车和小区射频等领域;代号为Falcon Messa的中端产品采用Intel 10nm工艺技术,用于4G/5G无线通信、UHD/8K广播视频、工业IoT和汽车等领域;代号为Falcon Mesa的高端产品采用Intel 10nm工艺技术,用于云和加速、太比特系统和高速信号处理等领域。

·Core(GT):用于消费级前端设备的性能计算、图形加速。

·Euclid:提供给开发者/创客的开发板,集成Atom低功耗处理器、RealSense摄像头模块、接口,可用做无人机、小型机器人的核心开发部件。

·Curie:提供给开发者/创客的模块,其内置Quark SE系统芯片、蓝牙低功耗无线电、以及加速计、陀螺仪等传感器,可用做低功耗可穿戴设备的核心部件。

从产品线来看,包含了CPU与FPGA的异构计算处理器将是Intel盈利的重点。预计到2020年Intel将有1/3的云数据中心节点采用FPGA技术,CPU+FPGA拥有更高的单位功耗性能、更低时延和更快加速性能,在大数据和云计算领域有望冲击CPU+GPU的主导地位,而Intel的至强处理器Xeon +FPGA也将在2017年下半年量产。

7.Intel的痛点:生态不完善
FPGA对GPU的潜力在于其计算速度与GPU不相上下,却在成本和功耗上对GPU有着显著优势。当然,劣势也有,但是FPGA的潜力是非常明显的。作为一个想要推向市场的商品来说,FPGA最需要克服,也是最容易克服的问题是普及程度。

大部分PC都配有或高端或低端的独立GPU,对于个人进行的中小规模神经网络开发和训练来说,其实它们的性能已经基本足够。而FPGA却不是在电脑里能找得到的东西,而多见于各种冰箱、电视等电器设备及实验室中,因此想要搞到一块能用来开发深度学习的FPGA其实还挺麻烦的。不仅如此,FPGA的不普及还体现在以下三个方面:

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top