微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 人工智能不玩虚的,还得看芯片

人工智能不玩虚的,还得看芯片

时间:05-07 来源:中国电子报 点击:

2016年初,一场"人机大战"成为万众瞩目的焦点,谷歌AlphaGo大胜世界围棋冠军李世石,更是引发激烈讨论。尽管这场世纪大战硝烟散尽,但AlphaGo的精彩表现让由此引发的人工智能热潮不减反增。在这股热潮下,很多行业都开始向人工智能演进,人工智能时代已经悄然到来,而人工智能也将极大地提升和扩展人类的能力边界,对促进技术创新、提升国家竞争优势,乃至推动人类社会发展产生深远影响。

我国人工智能正在向通用应用过度

纵观国内的人工智能产业发展,在整个产业链上主要由"基础技术"、"人工智能技术"和"人工智能应用"三个核心环节构成。从这三个方面,我们可以看到国内人工智能产业的发展脉络,可以对人工智能的应用进行解析。

人工智能的基础技术主要依赖于云计算技术和大数据技术。在这方面,国内市场的规模是巨大的。产业界对待云计算技术和大数据技术已不同于早期单纯地学习、模仿的业务模式,而是越来越务实地接纳它,不断挖掘其中蕴藏的巨大价值,并依据服务性质的不同,构建出人工智能的基础平台。

这些平台从基础设施、平台服务、软件应用服务等层面,为人工智能技术的实现和人工智能应用的落地提供了基础的后台保障和实现前提。例如,云创大数据推出的深度学习一体机,就是在大数据基础上推出的人工智能平台,有助于研究者迅速深入到人工智能的核心领域。

人工智能技术专注于模式识别、机器学习和人机交互三个方面。模式识别偏重于对信号、图像、语音、文字、指纹等非直观数据方面的处理,如语音识别、人脸识别等。机器学习覆盖了从通用人工智能应用到专用人工智能应用的大多数领域,如计算机视觉、自然语言处理、生物特征识别、DNA测序等。人机交互既包括了人与系统的语音交互,也包含了人与机器人实体的物理交互。

国内人工智能技术在应用层面主要聚焦于计算机视觉、语音识别和语言技术处理领域。其中的代表企业包括科大讯飞、百度、阿里巴巴、腾讯、旷视科技、格灵深瞳等。

人工智能应用则涉及到专用应用和通用应用两个方面。其中,专用领域的应用涵盖了目前国内人工智能应用的大多数应用,包括各领域的人脸识别、语音识别、智能机器人等方面。而通用型应用则侧重于智能家居、智能农业、智能医疗等领域的通用解决方案。目前,国内人工智能应用正处于由专业应用向通用应用过度的发展阶段。

从算法和芯片入手,推动人工智能应用创新

我国人工智能领域的研究积累和发达国家相比差距不大。如果能在国家战略层面,制定针对人工智能的全面推进计划,会给我国带来实现弯道超车、提升综合国力和影响力的绝佳机会。

我们应该大力推动人工智能发展,抢占人工智能应用创新制高点,助力国家产业转型升级,争取形成全球竞争优势。

这需要先创新人工智能算法。作为人工智能实现的核心,算法是未来全球人工智能行业最大的竞争门槛。但国内基本上还是在学习国外的算法,缺乏对算法的自主创新。虽然在工程学算法上我国已取得了阶段性突破,但是基于认知层面的算法水平还亟待提高,这也是未来竞争的核心领域。

目前,专用化领域的场景应用仍是研发和投资的核心,基础技术的成熟也带来了存储容量和机器学习等人工智能技术的提升,但受限于现阶段运算能力以及大规模CPU和GPU的并行解决方案,国内人工智能的发展主要集中于计算机视觉、语音识别、智能生活等方向上。

因此,通过算法的创新、技术的演进、数据的积累演化和超算平台的应用,未来我国人工智能产业的发展趋势应由专用化领域的场景应用向语音、视觉等领域的通用化解决方案发展。

未来人工智能的竞争重点将在机器学习领域,即监督学习、非监督学习和增强学习三个方面。届时,算法的竞争将进入白热化阶段。只有在算法层面突破,国家或企业才能在图像识别和计算机视觉领域取得突破性进展和国际技术水平。

下一步,我国要做的是研发人工智能芯片。在目前对人工智能技术的大量讨论中,有一点容易被忽略,那就是承载人工智能运行的芯片。人脑是千亿神经元、百万亿突触构成的复杂网络,现有芯片和这个还存在多个数量级差距。因此,我们需要从芯片上寻求突破,加强芯片的并行计算能力,在高速的状态下分析海量的数据;提高芯片的编程专用性、高性能、低功耗,在大规模服务器部署或资源受限的嵌入式应用方面体现潜力;同时做到将性能和功耗完美结合。

以谷歌的TPU芯片为例,与市面上的FPGA和GPU相较,其每瓦性能呈倍数提升。该芯片对于降低的运算精度有更高容忍度。也就是说,它每次运

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top