微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > GPU/CPU/TPU,聊人工智能硬件前咱先把这几个概念搞懂

GPU/CPU/TPU,聊人工智能硬件前咱先把这几个概念搞懂

时间:04-25 来源:华尔街见闻 点击:

市场对人工智能的热情持续高涨,特别是硬件领域。

正在向人工智能服务器供应商转型的图形处理器 (GPU)生产巨头英伟达(NVIDIA)股价周一创出历史新高,凸显出市场对人工智能硬件领域的追捧。

目前,Google、Facebook、Microsoft、百度等科技巨头纷纷涉足人工智能。Google本周就宣布,正在为人工智能研发专门的芯片TPU。浙商证券分析师杨云表示,人工智能将成为下一个大风口,首当其冲的就包括硬件。

在图像语音识别、无人驾驶等人工智能领域的运用层面,图形处理器 (GPU)正迅速扩大市场占比,而谷歌专门为人工智能研发的TPU则被视为GPU的竞争对手。

概念
人工智能的实现需要依赖三个要素:算法是核心,硬件和数据是基础。

算法主要分为为工程学法和模拟法。工程学方法是采用传统的编程技术,利用大量数据处理经验改进提升算法性能;模拟法则是模仿人类或其他生物所用的方法或者技能,提升算法性能,例如遗传算法和神经网络。

硬件方面,目前主要是使用 GPU 并行计算神经网络。

浙商证券制作了下图体现这些要素之间的关系:

从产业结构来讲,人工智能生态分为基础、技术、应用三层。

基础层包括数据资源和计算能力;技术层包括算法、模型及应用开发;应用层包括人工智能+各行业(领域),比如在互联网、金融、汽车、游戏等产业应用的语音识别、人脸识别、无人机、机器人、无人驾驶等功能。

GPU
英伟达(NVIDIA)制造的图形处理器 (GPU)专门用于在个人电脑、工作站、游戏机和一些移动设备上进行图像运算工作,是显示卡的"心脏"。

GPU与CPU的区别
本身架构方式和运算目的的不同,导致英特尔制造的CPU 和 GPU之间有所区别(图表来自浙商证券)。

GPU之所以能够迅速发展,主要原因是GPU针对密集的、高并行的计算,这正是图像渲染所需要的,因此 GPU 设计了更多的晶体管专用于数据处理,而非数据高速缓存和流控制。

与CPU相比,GPU拥有更多的处理单元。据海通证券分析师郑宏达、魏鑫介绍,

和CPU 上大部分面积都被缓存所占据有所不同,诸如GTX 200 GPU之类的核心内很大一部分面积都作为计算之用。如果用具体数据表示,大约估计在 CPU 上有 20%的晶体管是用作运算之用的,而(GTX 200)GPU 上有 80%的晶体管用作运算:

GPU 的处理核心 SP 基于传统的处理器核心设计,能够进行整数,浮点计算,逻辑运算等操作,从硬体设计上看就是一种完全为多线程设计的处理核心,拥有复数的管线平台设计,完全胜任每线程处理单指令的工作。

GPU 处理的首要目标是运算以及数据吞吐量,而 CPU 内部晶体管的首要目的是降低处理的延时以及保持管线繁忙,这也决定了 GPU 在密集型计算方面比起 CPU 来更有优势。

GPU+CPU异构运算
就目前来看,GPU不是完全代替CPU,而是两者分工合作。据海通证券:

在 GPU 计算中 CPU 和 GPU 之间是相连的,而且是一个异构的计算环境。这就意味着应用程序当中,顺序执行这一部分的代码是在 CPU 里面进行执行的,而并行的也就是计算密集这一部分是在 GPU 里面进行。

异构运算(heterogeneous computing)是通过使用计算机上的主要处理器,如CPU 以及 GPU 来让程序得到更高的运算性能。一般来说,CPU 由于在分支处理以及随机内存读取方面有优势,在处理串联工作方面较强。在另一方面,GPU 由于其特殊的核心设计,在处理大量有浮点运算的并行运算时候有着天然的优势。完全使用计算机性能实际上就是使用 CPU 来做串联工作,而 GPU 负责并行运算,异构运算就是"使用合适的工具做合适的事情"。

只有很少的程序使用纯粹的串联或者并行的,大部分程序同时需要两种运算形式。编译器、文字处理软件、浏览器、e-mail 客户端等都是典型的串联运算形式的程序。而视频播放,视频压制,图片处理,科学运算,物理模拟以及 3D 图形处理(Ray tracing 及光栅化)这类型的应用就是典型的并行处理程序。

GPU的运用
正是因为GPU特别适合大规模并行运算的特点,因此,"GPU 在深度学习领域发挥着巨大的作用"。via 海通证券:

GPU可以平行处理大量琐碎信息。深度学习所依赖的是神经系统网络--与人类大脑神经高度相似的网络--而这种网络出现的目的,就是要在高速的状态下分析海量的数据。例如,如果你想要教会这种网络如何识别出猫的模样,你就要给它提供无数多的猫的图片。而这种工作,正是 GPU 芯片所擅长的事情。 而且相比于 CPU,GPU 的另一大优势,就是它对能源的需求远远低于 CPU。GPU 擅长的是海量数据的快速处理。

深度学习令 NVIDIA 业绩加速增长,利用 GPU 的大规模并行处理能力来学习人工智能算法再合适不过,GPU 并行计算能力正在渗透一个又一个高精尖行业,推动GPU 的需求不断增长。移动端,不论是当前火热的移动直播,还是移动 VR 设备,基于图形处理的需求都在急剧爆发。目前移动市场的 GPU 还远远落后于 PC 端,市场被高通、ARM、imagination 等三大巨头占据。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top