微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 市场需求旺盛,放大器产品走俏

市场需求旺盛,放大器产品走俏

时间:02-25 来源:电子工程世界 点击:
运算放大器性能不断优化

  相比较D类放大器市场近几年的活跃,运算放大器市场的发展则一直比较稳健。事实上,由于面临越来越多的系统设计要求,以及多样的电路配置,选择一款合适的运算放大器产品变得日趋复杂。因为不存在理想的运算放大器,这就需要在各种性能参数之间做出折衷。但总体来看,运算放大器正在朝向更高的带宽,更低的工作电压、更小的耗电电流,占用更小的PCB面积以及更低的成本等方面发展。并且,随着家用电器以及工业设备对运算放大器信噪比要求的不断提高,这种趋势将一直持续下去。厂商也在致力于提供新的工艺、更多的封装选择来满足不断提高的市场要求。

  Brian Black:业界将继续开发超越基本运算放大器功能范畴的产品,满足特殊应用所需要的特性和功能。

  凌力尔特公司(Linear)信号调理产品部产品市场经理Brian Black指出,"没有哪一款完美的放大器可以适合所有应用。你需要根据不同的应用,选择不同规格指标组合,如高速度+低噪声+低输入偏置电流等来优化产品性能"。例如,手持式和电池供电型应用要求低静态电流。输入信号幅度很小的一些应用,低输入失调电压和失调电压漂移至关重要。而对于采用高阻抗传感器的应用低偏置电流产品则是必须的。其他需要均衡考虑的性能指标还包括CMRR、电压噪声、带宽和转换速率等。

  Black表示,除了需要在性能指标之间做出权衡之外,业界还将继续开发超越基本运算放大器功能范畴的产品,来满足特殊应用所需要的特性和功能。如专用高压侧电流检测放大器和用于驱动ADC的高速全差分放大器。

  "随着模数转换器转换速度和分辨率的持续攀升,找到一个可以实现产品数据表规定性能的驱动器电路变得愈发困难重重。但我们找到了解决办法",他说道,"在过去的几个月时间里,凌力尔特推出了多款创新型全差分ADC驱动器产品,包括LTC6400-x、LTC6401-x、LTC6404、LTC6406和LTC6410-6。这些产品把创新型架构与高速锗化硅(SiGe)工艺技术结合起来,解决了上述问题"。

  LTC6400实现了-73dB失真和低于6.5dB的噪声系数(在140MHz输入频率条件下),能够替代先前在通信和高速仪表应用中所使用的高功耗单端RF放大器。除了全差分放大器以外,LTC6400-x还集成了内置增益设定电阻器,可以产生一个固定增益输。Black指出,把增益设定电阻器内置于封装之中有三大优势:1.简化了电路板布局。大大缩减了元件数目和板级空间;2.RF稳定性问题减少。内置反馈电阻器消除了因外部增益电路产生的杂散电容所带来的麻烦;3.实现了性能的最大化。每个器件均专门针对其特殊的增益值进行了补偿,器件的带宽和失真性能得到优化。在很宽的带宽范围内实现了增益平坦度的最大化,并且最大限度地减小了群延迟偏差。

  市场应用要求不断提高,放大器的性能也不断优化,而工艺技术的进步也使得业界开发高性能放大器成为可能。周翔指出,放大器产品的飞速发展得益于几个方面的因素,1.新工艺新技术的发展;2.放大器产品在电子系统中的作用越来越重要,不可替代;3."定制化"需求,这也是放大器产品种类不断增加的主要推动力之一。他表示,TI已经推出了各种不同的工艺来满足不同产品的要求。如,针对高速度模拟产品而开发的BiCom3,其高电压版本BiCom3HV为36V Bipolar SiGe工艺,在兼顾速度的同时也可实现高电压的应用。此外,还有用于高精度模拟产品的HPA07,用于高电压大功率产品的LBC以及用于高密度器件的A035等。

  TI推出的高精度运算放大器OPA211就是采用BiCom3HV工艺开发。OPA211可提供100μV的失调电压,0.2μV/℃失调电压漂移以及不足1μs的建立时间,并且具有很宽的供电电压,适合驱动数据采集系统中的高精度模数转换器。此外,OPA211还是一款双极输入运算放大器,在降低失调电压误差方面表现出色,适合信号源阻抗较低的应用。

  NS则非常重视系统设计的能源转换效率。"我们推出了3款能源转换效率极高的全新高速差分放大器LMH6552、LMH6515以及LMH6555,尤其适用于无线通信基础设备、测试和测量仪表以及国防和航天设备应用。这3款放大器是PowerWise高能效模拟芯片系列的最新型号",NS放大器产品亚太区经理Kevin Kung说道。

  他指出,LMH6552正在申请注册专利的内置电路可进一步提高增益,但不会影响带宽、谐波失真或输出噪声等性能参数,因此可以减少多个增益级,有助于减少元件数目以及系统功耗。这款芯片还可以驱动输入频率高达70MHz的14位模拟/数字转换器。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top